\(^{a2^2}\) = a1.a3;
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Ta có:

\(\left\{{}\begin{matrix}a_2^2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a_2}{a_3}=\dfrac{a_1}{a_2}\\\dfrac{a_3}{a_4}=\dfrac{a_2}{a_3}\end{matrix}\right.\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất dãy tỉ sô bằng nhau ta có:

\(\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a_1}{a_4}\left(đpcm\right)\)

Chúc bạn học tốt!

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

22 tháng 11 2021

1+1= 2 nha
Em lo học đi, ở đó đừng nói bậy. Nếu em khó khăn thì báo cho nhà trường để giúp nghe


 

31 tháng 12 2016

mày ghi đề sai rồi

Chẳng hiểu gì cả

16 tháng 12 2015

a2^2=a1.a3
<=>a1/a2=a2/a3(1)
a3^2=a2.a4
<=>a2/a3=a3/a4(2)
(1),(2)=>a1/a2=a2/a3=a3/a4
<=>(a1/a2)^3=(a2/a3)^3=(a3/a4)^3=a1/a2.a2/a3.a3/a4
<=>a1^3/a2^3=a2^3/a3^3=a3^3/a4^3=a1/a4=a1^3+a2^3+a3^3/a2^3+a3^3+a4^3(đpcm)

28 tháng 4 2016

dễ lắm

31 tháng 12 2015

cách làm như thế này có đúng không nhỉ ? nếu đúng thì tích cho mik nhé !

31 tháng 12 2015

a2^2= a1.a3            (c )

a3^2=a2.a4             (d) 

từ (c) và (d) suy ra : a1/a2=a2/a3=a3/a4

=> (a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1/a2.a2/a3.a3/a4= a1/a4

mặt khác :(a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1^3/a2^3= a2^3/a3^3=a3^3/a4^3

= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3             

từ đó suy ra : a1/a4= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3   

23 tháng 10 2018

\(a_2^2=a_1.a_3\Rightarrow\frac{a_2}{a_3}=\frac{a_1}{a_2}\)

\(a_3^2=a_2.a_4\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_2}{a_3}=\frac{a_1}{a_2}=\frac{a_3}{a_4}\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a^3_2}{a^3_3}=\frac{a^3_3}{a_4^3}=\frac{a^2_2.a_2}{a^2_3.a_3}=\frac{a_1.a_3.a_2}{a_2.a_4.a_3}=\frac{a_1}{a_4}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)

\(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}=100\)