K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Lời giải:

\(3y-x=6\Rightarrow x=3y-6\)

\(\Rightarrow \frac{x}{y-2}=\frac{3y-6}{y-2}=\frac{3(y-2)}{y-2}=3\)

\(3y-x=6\Rightarrow 3y=x+6\)

\(\Rightarrow \frac{2x-3y}{x-6}=\frac{2x-(x+6)}{x-6}=\frac{x-6}{x-6}=1\)

Do đó: \(A=\frac{x}{y-2}+\frac{2x-3y}{x-6}=3+1=4\)

17 tháng 9 2017

Từ 3y - x = 6, ta suy ra 3y = 6 + x và x = 3y - 6

Ta có: A = \(\dfrac{x}{y-2}\)+\(\dfrac{2x-3y}{x-6}\) = \(\dfrac{x}{y-2}\)+\(\dfrac{2x-\left(6+x\right)}{x-6}\)

= \(\dfrac{x}{y-2}\)+\(\dfrac{2x-6-x}{x-6}\) = \(\dfrac{x}{y-2}\)+1 = \(\dfrac{x+y-2}{y-2}\)

= \(\dfrac{3y-6+y-2}{y-2}\) = \(\dfrac{4y-8}{y-2}\) = \(\dfrac{4\left(y-2\right)}{y-2}\) = 4

Vậy giá trị của biểu thức A là 4

hihi

6 tháng 4 2018

Ta có : \(3y-x=6\)

\(\Rightarrow x=3y-6\)

Thay \(x=3y-6\) vào biểu thức A , ta có :

\(\Rightarrow A=\dfrac{3y-6}{y-2}+\dfrac{2\left(3y-6\right)-3y}{3y-6-6}\)

\(=\dfrac{3\left(y-2\right)}{y-2}+\dfrac{3y-12}{3y-12}=3+1=4\)

Vậy A = 4 .

19 tháng 12 2020

Bài này quá dễ:vv

Ta có 3y-x=6

=> \(\left\{{}\begin{matrix}3y=6+x\\x=3y-6\end{matrix}\right.\)

Thay vào A ta có: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}=\dfrac{3y-6}{y-2}+\dfrac{2x-6-x}{x-6}=\dfrac{3\left(y-2\right)}{y-2}+\dfrac{x-6}{x-6}=3+1=4\)Vậy khi 3y-x=6 thì A=4

30 tháng 1 2019

\(Q=2x^2+\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)

\(Q\ge4+6+9=19\)

###Kaito###

5 tháng 7 2018

Ta có : \(3y-x=6\)

\(=>x=3y-6\)

\(=>A=\dfrac{3y-6}{y-2}+\dfrac{2\left(3y-6\right)-3y}{3y-6-6}\)

\(=>A=\dfrac{3y-6}{y-2}+\dfrac{6y-12-3y}{3y-12}\)

\(=>A=\dfrac{3y-6}{y-2}+\dfrac{3y-12}{3y-12}\)

\(=>A=\dfrac{3\left(y-2\right)}{y-2}+1=3+1=4\)

Vậy A=4.

Hello...........

19 tháng 3 2017

Từ x-2y=5 =>x=2y+5 thay vào A

19 tháng 3 2017

đơn giản vậy thôi à

9 tháng 2 2020

Ta có : \(x^2+3y^2=4xy\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)

Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)

Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)

9 tháng 2 2020

Ta có:

\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)

TH1: x=3y

\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)

TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)