Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
Do đó ta có:
\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)
Tương tự ta có:
\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)
Do đó biểu thức sẽ bằng:
\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)
Áp dụng tính chất tỉ lệ thức có:
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có:
1 + y/z=2x/z và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng :
2x/z . 2y/x . 2z/y = 8xyz/xyz =8
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}\) (1)
Xét 1 trường hợp:
- TH1: x + y + z = 0 \(\Rightarrow\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\)
Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)
- TH2: \(x+y+z\ne0\)
Từ (1) \(\Rightarrow\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\)\(\Rightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)
Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2^3=8\)