K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2015

1)5(x^2-1)+x(1-5x)= x-2

<=>5x2-5+x-5x2=x-2

<=>-5+x=x-2

<=>x-x=-2+5

<=>0x=3(vô lí)

vậy ko tìm được x

 

 

20 tháng 6 2015

daj quá bạn đăng từng baj thuj

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
17 tháng 1 2017

a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3

                            = (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)

                            = -3xy(x+y)                                 (do x+y+z=0)

            Vì x+y+z=0  =>x+y=-z

=> -3xy(x+y)=3xyz

 Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào

   Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

13 tháng 11 2017

1) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+2.x.3+3^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x+3}{x-3}=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy x=-3

13 tháng 11 2017

bạn ơi x ko thể bằng -3 đc vì

\(\dfrac{x}{x+3}=\dfrac{-3}{-3+3}=\dfrac{-3}{0}\) là sai