\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

Ta có: \(\left(a-b\right)^2\left(a+b\right)\ge0\Rightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Rightarrow a^3+b^3+abc\ge a^2b+ab^2+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Chứng minh tương tự rồi cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}\)

Ta có đpcm
Dấu "=" xảy ra khi a=b=c

13 tháng 12 2018

C/m: BDT:  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)   (1)

That vay ta co:

\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\)   (luon dung)

Tuong tu ta co:  \(b^3+c^3+abc\ge bc\left(a+b+c\right)\)  (2)

                         \(c^3+a^3+abc\ge ca\left(a+b+c\right)\)   (3)

Tu (1), (2), (3)  suy ra:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)   (dpcm)

13 tháng 4 2016

tt bài trên

30 tháng 12 2017

áp dụng BĐT cô si ta có a^3+1 >=2a\(\sqrt{a}\), tương tự.....

VT=<\(18\left(\frac{1}{2a\sqrt{a}}+\frac{1}{2b\sqrt{b}}+\frac{1}{2c\sqrt{c}}\right)\)=\(18\left(\frac{bc\sqrt{a}+ac\sqrt{b}+ab\sqrt{c}}{2abc\sqrt{abc}}\right)\)\(18\left(\frac{\sqrt{abc}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{2}\right)\)= \(9\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

ta lại có \(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)(1)

\(\left(\frac{a+b+c}{3}\right)^3>=abc=1\)

==> \(\left(a+b+c\right)^3>=27\)

==>\(\left(a+b+c\right)^2>=9\)(2)

nhân (1) và (2) vế theo vế ==> (a+b+c)^3 >=\(9\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)(đpcm)

30 tháng 12 2017

số 18 kia có trong đề ko

9 tháng 4 2017

1/ \(x^2+1\ge2x;x^2+y^2\ge2xy\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)

Dấu = xảy ra <=> x=1 và x=y <=> x=y=1

2/ \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\ge\left(a+b\right)\left(ab+0\right)=ab\left(a+b\right)\)

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

chứng minh tương tự rồi cộng 2 cái kia vào rút gọn sẽ ra nhé bạn

19 tháng 5 2020

Đề: \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\) ???

*Ta chứng minh : \(x^4-x^3+2\ge x+1\forall x>0\)

\(\Leftrightarrow x^4-x^3-x+1\ge0\Leftrightarrow\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( đúng )

Do đó: \(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\) \(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

6 tháng 12 2018

ban dung co khoe

12 tháng 5 2017

Ta có:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)

Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:

\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

Tương tự ta có:

\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)

Cộng 3 cái trên vế theo vế ta được

\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

\(\Rightarrow\)ĐPCM

12 tháng 5 2017

demonstrate that \(a^3+b^3\ge ab\left(a+b\right)\)