Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài:A=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=8\cdot\dfrac{3}{4}=6\)
\(A=\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
\(=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}\\ =abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\ =8\cdot\dfrac{3}{4}\\ =6\)
\(s=\frac{bc}{bc\left(1+a+ab\right)}+\frac{1}{1+b+bc}+\frac{b}{b\left(1+c+ac\right)}=>\) \(s=\frac{bc}{bc+abc+ab^2c}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}\)=>
\(s=\frac{bc}{1+b+bc}+\frac{1}{1+b+bc}+\frac{b}{1+b+bc}\)=>
\(s=\frac{1+b+bc}{1+b+bc}=1\)Vậy với a.b.c=1 S=1
Ta có :
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)
\(A=\dfrac{a+ab+1}{ab+a+1}\)
\(\Rightarrow A=1\left(đpcm\right)\)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)
cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)
Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)
chứng minh tương tự suy ra đpcm
Lời giải:
Ta có:
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)
\(S=\frac{c}{1.c+ac+abc}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ac}\)
Thay \(abc=1\) ta có:
\(S=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)
\(S=\frac{a+ac+1}{c+ac+1}=1\)
Lời giải:
Thay $abc=1$ ta có:
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+a.c+ab.c}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ca}=\frac{c+ca+1}{1+c+ca}=1\)
1)\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
Vậy....
b)\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-4.\dfrac{3}{4}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7\)
\(=\dfrac{-5}{2}.\dfrac{6}{5}-7\)
\(=-3-7\)
\(=-10\)
Câu 1:
1/ Tìm x:(mk nghĩ là z)
\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\Rightarrow\left(x+1\right)^2=\left(-3\right).\left(-12\right)=36\)
\(\Rightarrow x+1=6;x+1=-6\)
+) \(x+1=6\Rightarrow x=5\)
+) \(x+1=-6\Rightarrow x=-7\)
2/Tính:
\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}-\dfrac{4.3}{4}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}.\dfrac{6}{5}\right)-\left(3.\dfrac{6}{5}\right)-7\)
\(=0,6-3,6-7=-10\)
CTHH có mà (=.=") https://hoc24.vn/hoi-dap/question/384421.html