Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)
\(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Ta CM: \(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Áp dụng bđt Cô si:
\(x^8+x^8+x^8+x^8+x^8+y^8+y^8+y^8\ge8x^5y^3\) (*)
Tương tự, \(5y^3+3x^3\ge8x^3y^5\) (**)
Từ (*), (**) \(\Rightarrowđpcm\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{2x+y}{8}+\frac{y+z}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\\\frac{y^3}{\left(2y+z\right)\left(z+x\right)}+\frac{2y+z}{8}+\frac{x+z}{8}\ge3\sqrt[3]{\frac{y^3}{64}}=\frac{3y}{4}\\\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{2z+x}{8}+\frac{x+y}{8}\ge3\sqrt[3]{\frac{z^3}{64}}=\frac{3z}{4}\end{cases}}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5\left(x+y+z\right)}{8}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5}{8}\ge\frac{3}{4}\)
\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}\ge\frac{1}{8}\)
\(\Leftrightarrow P_{min}=\frac{1}{8}\)
Đặt\(A=\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)}{\left[\left(x+y\right)+\left(x+z\right)\right]\left[\left(x+y\right)+\left(y+z\right)\right]\left[\left(z+x\right)+\left(z+y\right)\right]}\)
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8.\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}}=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))