K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Ta có:

\(0\le x\le y\le z\le1\Leftrightarrow\left(1-x\right)\left(1-y\right)\ge0\)

\(\Rightarrow1-y-x+xy\ge0\Leftrightarrow1+xy\ge x+y\)(1)

Tiếp tục chứng minh:

\(\hept{\begin{cases}0\le x\le y\Leftrightarrow xy\ge0\\1\ge z\end{cases}}\) (2)

Cộng theo vế của (1) và (2) ta có:\(2\left(xy+1\right)\ge x+y+z\)

trở lại bài toán: \(\frac{z}{xy+1}=\frac{2z}{2\left(xy+1\right)}\le\frac{2z}{x+y+z}\)

CHứng minh tương tự: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\end{cases}}\)

Cộng theo vế ta có đpcm

28 tháng 6 2020

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\)

\(\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Chứng minh tương tự ta được \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{z+x}\left(3\right)\end{cases}}\)

Cộng từng vế của (1)(2)(3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+x}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Chứng minh tương tự được \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}=2\left(5\right)\)

(4)(5) => đpcm

AH
Akai Haruma
Giáo viên
1 tháng 2 2020

Lời giải:

Vì $0\leq x\leq y\leq z\leq 1\Rightarrow 0\leq xy\leq xz\leq yz$

$\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq \frac{x+y+z}{xy+1}(1)$

Xét $\frac{x+y+z}{xy+1}-2=\frac{x+y+z-2xy-2}{xy+1}=\frac{(x-1)(1-y)+(z-xy-1)}{xy+1}\leq 0$ do $0\leq x\leq y\leq z\leq 1$)

$\Rightarrow \frac{x+y+z}{xy+1}\leq 2(2)$

Từ $(1);(2)\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq 2$ (đpcm)

1 tháng 2 2020

Bài này mà lớp 7 á? Nguyễn Thiện Nhân

14 tháng 5 2019

Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!

28 tháng 1 2019

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

16 tháng 5 2020

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

29 tháng 11 2018

:v .Sai mẹ r. *Chứng lại (mong rằng lầng này không còn lỗi sai).Sau đây là cách chứng minh của lớp 7

Do \(0\le x\le y\le z\le1\) nên \(xy< xz< yz\Leftrightarrow xy+1< xz+1< yz+1\)

Do đó; \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\) (1)

Ta cần chứng minh: \(\frac{x+y+z}{1+xy}\le\frac{1+xy+1}{1+xy}\Leftrightarrow x+y+z\le1+xy+1\)(đang tìm cách chứng minh.Sẽ đăng lên sau)

Suy ra: \(\frac{x+y+z}{xy+1}\le\frac{1+xy+1}{xy+1}=1+\frac{1}{xy+1}\le1+1=2\)  ( do \(xy+1\ge1\Rightarrow\frac{1}{xy+1}\le1\))(2)

Từ (1) và (2) suy ra đpcm 

29 tháng 11 2018

mik đành thêm vào bài(gì mà đăng lên sau nhé)

Hiển nhiên \(0\le x\le y\le z\le1\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\y-1\ge0\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy+1-x-y\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Do \(z\le1\)\(\Rightarrow\frac{x+y+z}{xy+1}\le\frac{xy+1+1}{xy+1}\le\frac{xy+2+xy}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}\le2\)

Nhờ bạn giải hộ mik giấu bằng xảy ra khi nào

28 tháng 12 2018

Ta có:

\(\hept{\begin{cases}x-1\ge0\\y-1\ge0\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy-x-y+1\ge0\)

\(\Rightarrow xy+1\ge x+y\)

\(\Rightarrow x+y+z\le xy+1+1\)

19 tháng 3 2019

sai 2 lần mà bảo vt lộn :(( 

18 tháng 1 2020

2.

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Bài 1:
Ta có:
$x+y+2=xy$

$\Leftrightarrow xy-x-y=2$

$\Leftrightarrow x(y-1)-(y-1)=3$

$\Leftrightarrow (x-1)(y-1)=3$
Đến đây là dạng phương trình tích đơn giản. Ta xét các TH sau:

TH1: $x-1=1$ và $y-1=3$

$\Rightarrow x=2; y=4$

TH2: $x-1=-1$ và $y-1=-3$

$\Rightarrow x=0; y=-2$

Do vai trò $x,y$ như nhau nên $x=4;y=2$ và $x=-2;y=0$ cũng thỏa mãn

Vậy.......

Vậy.........

10 tháng 12 2017

ko co gia tri x,y,z thoa man

con cach lam co gi hoi mik minh tra loi cho

Ai giải trước mk mỗi ngày 3 cái . k hết 7 ngày nha 

11 tháng 2 2020

vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó

chúc học tốt !