K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

\(\frac{5a^3-b^3}{ab+3a^2}-\left(2a-b\right)=-\frac{\left(a-b\right)^2\left(a+b\right)}{ab+3a^2}\le0\)

\(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}\le2a-b\)

13 tháng 11 2016

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath làm tương tự chỗ cuối thay a+b+c=2015 là dc

1 tháng 4 2018

Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*

Tương tự cho 2 BĐT còn lại cũng có:

\(P\le2a-b+2b-c+2c-a=a+b+c=3\)

Dấu '=" khi \(a=b=c=1\)

3 tháng 5 2020

Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)

\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)

\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)

\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)

Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)

Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)

6 tháng 8 2020

Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)

Cộng lại thì:

\(LHS\le a+b+c=3\)

Đẳng thức xảy ra tại a=b=c=1

9 tháng 5 2018

 Đề bài bị trái dấu bạn nhé

CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\) 

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\) 

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\) 

\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0 

CMTT các hạng tử khác 

\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)

9 tháng 5 2018

vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai 

27 tháng 10 2016

Xét Bất đẳng thức phụ:

\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Tương tự ta có:

\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)

Cộng lại theo vế ta có:

\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)

Đpcm

20 tháng 4 2020

pịa pịa pịa 

11 tháng 11 2017

Xem kỹ lại đề nhé. Anh không nghĩ đề đúng đâu

12 tháng 11 2017

uk e sorry sửa lại đề rồi đấy