Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a+b=c Ta được a+b-c=0
Do đó:\(\left(a+b-c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)
Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế
Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)
\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)
\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)
\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)
Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)
\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)
\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)
Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi
GOOD LUCK
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{9}{\dfrac{4}{3}}=\dfrac{9}{12}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{2}\)
oh my dog toán lớp 8 đây á
mik làm đc hình như mỗi câu a thôi thì phải
Cho a, b là các số thực thỏa mãn : a + b = 1. Chứng minh: a2 +b2 > hoặc = \(\frac{1}{2}\)
\(gt\Rightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\) (1)
Do theo BĐT AM-GM (Cô si) \(a^2+b^2\ge2\left|ab\right|\ge2ab\)
Thay vào (1) suy ra \(1=a^2+2ab+b^2\ge4ab\)
Suy ra \(ab\le\frac{1}{4}\).Từ đây ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\ge\frac{1}{2}^{\left(đpcm\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2=b^2\\a+b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Phép chứng minh hoàn tất!