K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

\(a,b,c>0;abc=1000\)

\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)

P đạt GTLN là 1/1000 khi \(a=b=c=10\)

NV
14 tháng 10 2019

Ta có BĐT: \(x^4+y^4\ge xy\left(x^2+y^2\right)\)

Dễ dàng chứng minh bằng biến đổi tương đương (bạn tự làm, 3 dòng thôi :D)

\(\Rightarrow P=\sum\frac{a}{a.abc+b^4+c^4}\le\sum\frac{a}{a^2bc+bc\left(b^2+c^2\right)}=\sum\frac{a}{bc\left(a^2+b^2+c^2\right)}=\sum\frac{a^2}{a^2+b^2+c^2}=1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c=1\)

26 tháng 5 2019

Note: Em không chắc.Rất mong được mọi người góp ý ạ,em chưa biết cách dùng sos nên đành dùng cách khác ạ.

BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^{ 4}+b^4+c^4+ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-ab\left(a^2+b^2\right)-bc\left(b^2+c^2\right)-ca\left(c^2+a^2\right)\ge0\)  (*)

Dễ thấy BĐT trên là hệ quả của BĐT sau: \(a^4-ab\left(a^2+b^2\right)+b^4\ge0\) (1)

\(\Leftrightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)(2). Theo BĐT Cauchy-Schwarz dạng Engel,ta có:

\(VT=\frac{\left(a^2\right)^2}{1}+\frac{\left(b^2\right)^2}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\)

Ta luôn có \(\left(a-b\right)^2\ge0\forall a,b\inℝ\Rightarrow a^2+b^2\ge2ab\)

Suy ra: \(VT=a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)=VP\)

Do vậy BĐT (2) đúng suy ra BĐT (1) đúng (do 2 BĐT này tương đương nhau)

Tương tự với hai BĐT còn lại ta cũng có: \(b^4-bc\left(b^2+c^2\right)+c^4\ge0\);

\(c^4-ca\left(c^2+a^2\right)+a^4\ge0\). Cộng theo vế 3 BĐT trên suy ra (*) đúng hay ta có Q.E.D

26 tháng 9 2018

\(2a^4+a+2b^4+b+2c^4+c\ge3\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)\ge3\left(a^3+b^3+c^3\right)-3\)

\(=2\left(a^3+b^3+c^3\right)+a^3+1+1+b^3+1+1+c^3+1+1-9\)

\(\ge2\left(a^3+b^3+c^3\right)+3\left(a+b+c\right)-9=2\left(a^3+b^3+c^3\right)\)

\(\Rightarrow a^4+b^4+c^4\ge a^3+b^3+c^3\)

17 tháng 6 2020

Ta có: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)

\(=3\left(a^2+b^2+c^2\right)-3\left(ab+bc+ac\right)+3abc\)

Xét: \(4\left(a^2+b^2+c^2\right)-\left(a^3+b^3+c^3\right)\ge9\)(1)

<=> \(\left(a^2+b^2+c^2\right)+3\left(ab+bc+ac\right)-3abc\ge9\)

<=> \(\left(a+b+c\right)^2+\left(ab+bc+ac\right)-3abc\ge9\)

<=> \(ab+bc+ac\ge3abc\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)(2)

Để chứng (1) đúng ta cần chứng minh (2) đúng

Thật vậy ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

=> (2) đúng 

Vậy (1) đúng 

Dấu "=" xảy ra <=> a = b = c =1 .

19 tháng 7 2016

bài nè cấp 2 chưa làm đc đâu bạn ạ