Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(z^2+2z+1)=0\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(z+1)^2=0(*)\)
Vì \((x-y)^2; (x-1)^2; (z+1)^2\geq 0, \forall x,y,z\in\mathbb{R}\)
Do đó, để $(*)$ xảy ra thì \((x-y)^2=(x-1)^2=(z+1)^2=0\)
\(\Rightarrow \left\{\begin{matrix} x=y=1\\ z=-1\end{matrix}\right.\)
\(\Rightarrow P=x+y+z=1\)
từ đề bài => \(x^2+2y+1+y^2+2z+1+z^2+2x+1=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)=> x=-1; y=-1 và z=-1
A=-1^2016+ -1^2016+ -1^2016=1+1+1=3
a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)
\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )
c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )
cộng 3 vế lại cùng 1 lúc ta sẽ có (x+1)2 +(y+1)2+(z+1)2 = 0.
dấu bằng xảy ra khi cả 3 biểu thức bằng 0, suy ra x=y=z= -1
thế vào A thì A= -3
Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)
\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x-1\right)^2\ge0\forall x\\\left(z+1\right)^2\ge0\forall z\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z}\)
Do đó: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\\z+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=1\\z=-1\end{cases}}}\)
Vậy \(x+y+z=1+1+\left(-1\right)=2\)
Chúc bạn học tốt.