Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu khoảng cách giữa hai điểm bất kì đều bé hơn 1 thì ta chỉ cần chọn 1 điểm \(A\) bất kì trong số 2001 điểm đã cho, rồi vẽ đường tròn \(\left(A,1\right)\), đường tròn này sẽ chứa cả 2000 điểm còn lại, do đó ta có đpcm.
Gỉa sử rằng có hai điểm \(A,B\) trong số 2001 điểm đã cho mà có khoảng cách lớn hơn \(1\). Vẽ các đường tròn tâm là \(A,B\) và bán kính cùng là \(1\). Ta còn lại 1999 điểm. Mỗi điểm \(C\) bất kì trong số 1999 điểm ấy, theo giả thiết \(AB,AC,BC\) phải có một đoạn có độ dài bé hơn \(1\). Vì \(AB>1\) nên \(AC<1\) hoặc \(BC<1\), do đó hoặc là \(C\) nằm trong đường tròn \(\left(A,1\right)\) hoặc nằm trong đường tròn \(\left(B,1\right)\). Do có 1999 điểm \(C\) như vậy nên theo nguyên lí Dirichlet, tồn tại ít nhất \(\left[\frac{1999}{2}\right]+1=1000\) điểm nằm trong cùng 1 đường tròn (trong hai đường tròn đang xét). Giả sử đường tròn đó là \(\left(A,1\right)\). Cùng với điểm \(A\) ta có 1001 điểm nằm trong đường tròn \(\left(A,1\right)\) (ĐPCM).
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng