Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: các phần tử trong tập hợp A khác tất cả các phần tử trong tập hợp B
Mà A có 15 phần tử là các số nguyên dương không vượt quá 28
B có 14 phần tử là các số nguyên dương không vượt quá 28
=> có 15 + 14 = 29 phần tử khác nhau không và không vượt quá số 28. Điều này không đúng vì Từ 1 đến 28 có 28 số nguyên dương
Vậy có ít nhất 1 phân f tử thuộc A = 1 phần tử thuộc B
Ta cần chứng minh tồn tài hai số nguyên tố liên tiếp mà khoảng cách giữa chúng lớn hơn \(10^{2021}\).
Tổng quát, ta sẽ chứng minh với mọi \(n\)nguyên, luôn có hai số nguyên tố liên tiếp có khoảng cách lớn hơn \(n\).
Xét dãy \(n\)số liên tiếp: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).
Với \(2\le k\le n+1\):
\(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên \(\left(n+1\right)!+k\)là hợp số.
Do đó dãy đã cho gồm toàn hợp số.
Vậy ta có đpcm.