Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(3\ge x\ge1\)
Áp dụng BĐT Bunhiacopski:
\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)
Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)
Nên để thõa mãn yêu cầu bài toán thì
\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)
Lời giải:
Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$
$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$
Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$
Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)
\(P=\dfrac{1}{2021}\left(\dfrac{2021^2}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{2021}.\dfrac{\left(2021+1\right)^2}{x+y}=\dfrac{1}{2021}.\dfrac{2022^2}{\dfrac{2022}{2021}}=2022\)
\(P_{min}=2022\) khi \(\left(x;y\right)=\left(1;\dfrac{1}{2021}\right)\)
sao cái đoạn \(\dfrac{1}{2021}\left(\dfrac{2021^2}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{2021}.\dfrac{\left(2021+1\right)^2}{x+y}\) làm kiểu gì ra thầy :)
TH1: \(z=0\Rightarrow4x^2-y^2=19\Leftrightarrow\left(2x-y\right)\left(2x+y\right)=19\)
\(\Rightarrow\left(x;y\right)=\left(5;9\right)\)
TH2: \(z=1\Rightarrow4x^2-y^2=2040\Rightarrow\left(2x-y\right)\left(2x+y\right)=2040\)
(ko có nghiệm nguyên)
TH3: \(z\ge2\Rightarrow2022^z⋮4\)
Do \(4x^2;2022^2;18\) đều chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn \(\Rightarrow y=2k\)
\(\Rightarrow4x^2=4k^2+2022^z+18\)
\(\Rightarrow4x^2-4k^2-2022^z=18\)
Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm
Vậy pt có bộ nghiệm tự nhiên duy nhất: \(\left(x;y;z\right)=\left(5;9;0\right)\)
ta có :
2022 mà bạn