Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x}=\frac{5}{y}\Rightarrow\frac{x}{2}=\frac{y}{5}\\ \)
Đặt\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
\(\Rightarrow xy=2k.5k=10k^2\)Mặt khác, \(xy=1000\)\(\Rightarrow10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm10\)
*Với\(k=10\Rightarrow x=20,y=50\)
*Với \(k=-10\Rightarrow x=-20,y=-50\)
Vậy\(\hept{\begin{cases}x=-50,y=-20\\x=50,y=20\end{cases}}\)
theo đề ta có :
xy= 1000 ==> y=1000/x (1)
theo đề ta lại có 2/x =5/y
==> 2y/xy=5x/xy
==> 2y = 5x (2)
thay (1) vào (2) ta đc 2.1000/x=5x
2000/x = 5x
2000 = 5x^2
400 = x^2
==>x=20 hoặc x=-20
mà theo đề thì x,y <0 nên loại x= 20 và nhận x=-20
+ x= -20 thì y = 1000/-20= -50
vậy cặp số x , y thỏa mãn là
x= -20 và y = -50
k cho mk nha
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Đăt \(\frac{x}{2}\)=\(\frac{y}{5}\)=k
x=2k ; y=5k (1)
Thay (1) vào xy=1000, ta có:
(2k).(5k)=1000
10.k2 =1000
k2 =1000:10
k2 =100
Mà100=102=(-10)2
Nên k=10 hoăc k=-10
Với k=10, ta có:
x=2k=2.10=20
y=5k=5.510=50
Với k=-10, ta có:
x=2k=2.(-10)=-20
y=5k=5.(-10)=-50
Vì x,y<0 nên:x=20,y=-50