Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)
\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)
\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)
Ta lại có:
\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)
\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)
Theo đề bài ta có: (sửa đề luôn)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Mình làm mẫu cho 1 câu nha !
a, ĐKXĐ : x khác -3 ; -1 ; 2
Biểu thức = 2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0
=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến
k mk nha
câu này thi bn quy đòng bình thường mà tính thôi
khai triển ra
rồi tạo ra x= y để thay vào bạn cứ biến đổi
như vậy thì sẽ ra thôi
a: x-y-z=0
=>x=y+z; y=x-z; z=x-y
\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)
b: Tham khảo: