Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co:
a-b=a^3+b^3
a-b-b^3=a^3
Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3
Nhưng a-b-b^3=a^3 nên b=0
Mà a=a^3 suy ra a=1
\(a;b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Leftrightarrow\frac{a^3-b^3}{a-b}< \frac{a-b}{a-b}\)(vì a - b = a3 + b3 > 0 với a;b > 0)
\(\Leftrightarrow a^2+ab+b^2< 1\)
Do a,b đều dương nên a^3 + b^3 dương => a - b dương
Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được :
\(a^2+b^2+ab<1\)
<=> \(\left(a-b\right)\left(a^2+b^2+ab\right)
<=> \(a^3-b^3=a^3+b^3\)
do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng
Vậy bất đẳng thức đã cho là đúng (đpcm)
bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\) (1)
<=> \(\frac{1+a^2+b^2+1}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)
>=> \(\frac{4}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)
<=> 2 ( 1 + ab) \(\le\)1 + a^2 + b^2 + a^2b^2
<=> a^2 b^2 -2ab + 1 \(\ge\)0
<=> (ab - 1 ) ^2 \(\ge\)0 đúng với mọi số thực dương a, b
vậy (1) đúng với mọi số thực dương a, b
Dấu "=" xảy ra <=> ab = 1 và a^2 + b^2 = 2 <=> a = b = 1