K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 7 2021

\(a^3+\dfrac{1}{9}+\dfrac{1}{9}\ge3\sqrt[3]{\dfrac{a^3}{81}}=\dfrac{a}{\sqrt[3]{3}}\)

\(b^3+\dfrac{8}{9}+\dfrac{8}{9}\ge3\sqrt[3]{\dfrac{64b^3}{81}}=\dfrac{4b}{\sqrt[3]{3}}\)

Cộng vế:

\(\dfrac{1}{\sqrt[3]{3}}\left(a+4b\right)\le a^3+b^3+2\le3\)

\(\Rightarrow a+4b\le3\sqrt[3]{3}\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{\sqrt[3]{9}};\dfrac{2}{\sqrt[3]{9}}\right)\)

4 tháng 6 2019

Theo đề : a2 + 4b2 = 9 => (a + 2b)2 = 4ab + 9 <=> 4ab = (a + 2b)2 - 9

Ta có : T = \(\frac{ab}{a+2b+3}\)=> 4T = \(\frac{4ab}{a+2b+3}\)\(\frac{\left(a+2b\right)^2-9}{a+2b+3}\)=\(\frac{\left(a+2b+3\right)\left(a+2b-3\right)}{a+2b+3}\)= a + 2b -3

Mặt khác a + 2b \(\le\) \(\sqrt{2\left(a^2+4b^2\right)}\) = \(\sqrt{2.9}\)\(3\sqrt{2}\)=>  \(T\le\frac{3\sqrt{2}-3}{4}\)

Dấu "=" xảy ra khi a = 2b = \(\frac{3\sqrt{2}}{2}\)=> b = \(\frac{3\sqrt{2}}{4}\)

Vậy giá trị nhỏ của T là \(\frac{3\sqrt{2}-3}{4}\)tại a = \(\frac{3\sqrt{2}}{2}\)và b = \(\frac{3\sqrt{2}}{4}\)

Có gì sai mọi người cmt cho mk bt nha :>

24 tháng 12 2020

Có :

\(\left(a^2+4b^2+9c^2\right).\left(1+\frac{1}{4}+\frac{1}{9}\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{49}{36}\ge\left(a+b+c\right)^2\)

\(\Rightarrow A\le\frac{7}{6}\)

22 tháng 1 2021

c2 : \(\frac{36a^2}{36}+\frac{36b^2}{9}+\frac{36c^2}{4}\ge\frac{\left(6a+6b+6c\right)^2}{49}=\frac{6^2\left(a+b+c\right)^2}{7^2}\)

\(< =>\frac{6^2\left(a+b+c\right)^2}{7^2}\le1< =>a+b+c\le\frac{7}{6}\)

29 tháng 5 2017

Giải: Ta có:

\(\frac{1}{4}\left(a+b\right)=a^2+b^2-ab\ge\left(a+b\right)^2-3\frac{\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow0\le a+b\le1\)

Mặt khác: \(A\le20\left(a+b\right)\left(a^2+b^2-ab\right)-6\frac{\left(a+b\right)^2}{2}+2013\)

\(\Rightarrow A\le20\left(a+b\right)\frac{a+b}{4}-3\left(a+b\right)^2+2013=2\left(a+b\right)^2+2013\le2015\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Vậy \(A_{max}=2015\Leftrightarrow a=b=\frac{1}{2}\)

28 tháng 5 2017

Từ biểu thức A ta suy ra để A max thì a, b không âm.

Từ Giả thiết ta suy ra a + b = 4(a2 - ab + b2) hay (a + b)2 = 4(a3 + b3). Thế vào A ta được:

A = 5(a + b)2 - 6(a2 + b2) + 2013 = -(a2 + b2) + 10ab + 2013 = -(a - b)2 + 8ab + 2013.

Từ GT ta cũng suy ra a + b \(\ge\)4ab nên A \(\le\)-(a - b)2 + 2(a + b) + 2013 \(\le\) 2013.

dấu "=" xảy ra khi a = b = 0. Vậy Max A = 2013 khi a = b = 0.

30 tháng 6 2020

Vào TKHĐ của mình xem hình ảnh cho tiện nhé !

đây là câu trả lời của mình nha ! Tránh bị phàn nàn là copy

17 tháng 2 2019

bnhia dưới mẫu ta được: 

\(...\le\frac{a\left(a+ac+a\right)}{9a}+\frac{b\left(b+ab+1\right)}{9b}+\frac{c\left(c+bc+1\right)}{9c}\le\frac{6+\frac{\left(a+b+c\right)^2}{3}}{9}=1\)

"=' <=> a=b=c=1



 

3 tháng 7 2020

Chắc ý bạn ấy là thế này:

\(\frac{a}{a^3+b^2+c}=\frac{a\left(\frac{1}{a}+1+c\right)}{\left(a^3+b^2+c\right)\left(\frac{1}{a}+1+c\right)}\le\frac{1+a+ac}{\left(a+b+c\right)^2}\)

Thiết lập các BĐT tương tự rồi cộng lại:

\(LHS\le\frac{3+a+b+c+ab+bc+ca}{\left(a+b+c\right)^2}\le\frac{6+\frac{\left(a+b+c\right)^2}{3}}{\left(a+b+c\right)^2}=1\)

Vậy ta có đpcm

Đẳng thức xảy ra tại a=b=c=1

30 tháng 5 2019

Từ giả thiết và BĐT AM-GM suy ra:\(\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\)3

Ta có:

P\(\ge\)\(\frac{2a^3}{3\left(a^2+b^2\right)}\)+\(\frac{2b^3}{3\left(c^2+b^2\right)}\)+\(\frac{2c^3}{3\left(a^2+c^2\right)}\)

=\(\frac{2}{3}\)(\(\frac{a\left(a^2+b^2\right)-ab^2}{\left(a^2+b^2\right)}\)+\(\frac{b\left(c^2+b^2\right)-bc^2}{\left(c^2+b^2\right)}\)+\(\frac{a\left(a^2+c^2\right)-ca^2}{\left(a^2+c^2\right)}\))

=\(\frac{2}{3}\)(a+b+c-\(\frac{ab^2}{\left(a^2+b^2\right)}\)-\(\frac{bc^2}{\left(c^2+b^2\right)}\)-\(\frac{ca^2}{\left(a^2+c^2\right)}\))

\(\ge\)\(\frac{2}{3}\)(a+b+c-\(\frac{a}{2}\)-\(\frac{b}{2}\)-\(\frac{c}{2}\))

=\(\frac{2}{3}\).\(\frac{a+b+c}{2}\)=\(\frac{a+b+c}{3}\)=\(\frac{\left(a+1\right)+\left(b+1\right)+\left(c+1\right)}{3}\)-1

\(\ge\)\(\frac{3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{3}\)-1\(\ge\)2

Vậy:MinP=2 khi a=b=c=2

30 tháng 5 2019

cách này dễ hiểu hơn nè :

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

Ta có : \(1\ge\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)

\(\Leftrightarrow1\ge\frac{9}{a+b+c+3}\)\(\Leftrightarrow a+b+c+3\ge9\)\(\Leftrightarrow a+b+c\ge6\)

\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab^2-a^2b}{a^2+ab+b^2}=a-\frac{ab^2+a^2b}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)

Tương tự : \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\)\(\frac{c^3}{c^2+ac+a^2}\ge c-\frac{a+c}{3}\)

Cộng cả 3 vế , ta được : \(P\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{1}{3}\left(a+b+c\right)\ge\frac{1}{3}.6=2\)

Vậy GTNN của P là 2 \(\Leftrightarrow a=b=c=2\)