Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a,b,c>0 mà a+b+c=1 \(\Rightarrow\left(1-a\right)\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a\left(a-b\right)^2\le\left(a-b\right)^2\)
tương tự và cộng theo vế: \(VT\le6\left(ab+bc+ca\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=2\left(a+b+c\right)^2=2\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Câu hỏi của nguyen thu phuong - Toán lớp 8 - Học toán với OnlineMath
\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)
\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)
\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)
\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)
\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)
thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)
Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)
Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)
Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)
\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)
\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)
\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)
Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)
Với x,y dương ta có 2 bất đẳng thức phụ sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)
Áp dụng (*) và (**), ta có:
\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)
Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)
\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)
Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:
\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))
Đẳng thức xảy ra khi \(a=b=c\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Ta có: \(\left(a^3+b^3\right)\left(a+b\right)-ab\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(1-a\right)\left(1-b\right)\) \((*)\)
\(+)\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(\frac{a^2}{b}+\frac{b^2}{a}\right)\left(a+b\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\left(1\right)\)
\(+)\left(1-a\right)\left(1-b\right)=1-\left(a+b\right)+ab\le1-2\sqrt{ab}+ab\left(2\right)\)
Từ: \((1)(2)(*)\) ta được:
\(4ab\le1-2\sqrt{ab}+ab\Leftrightarrow3ab+2\sqrt{ab}-1\le0\)
\(\Rightarrow0< ab\le\frac{1}{9}\)
Từ trên ta suy ra được \(Max_P=\frac{1}{9}\)