\(a + \dfrac{1}{b} = 1\).Tìm GTNN của biểu thức:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{2\sqrt{2}}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}\dfrac{1}{a}=\dfrac{1}{b}\\a+b=2\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow a=b=\sqrt{2}\)

27 tháng 2 2017

a+b=?

26 tháng 5 2017

cái chứng minh phải nhỏ hơn 1 chứ bạn ơi

1 tháng 4 2020

1) Khi x = 36 thì A = \(\frac{\sqrt{36}+4}{\sqrt{36}+2}\Leftrightarrow\frac{5}{4}\)

Vậy khi x = 36 thì A = \(\frac{5}{4}\)

2) B = \((\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}):\frac{x+16}{\sqrt{x}+2}\)

= \(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\frac{\sqrt{x}+2}{x+16}=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)

= \(\frac{\sqrt{x}+2}{x-16}\)

Vậy B = \(\frac{\sqrt{x}+2}{x-16}\)

19 tháng 7 2018

Ta có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\left(1\right)\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\left(2\right)\)

\(\dfrac{a}{a+b+c}< \dfrac{c}{a+c}< \dfrac{c+b}{a+b+c}\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta có :

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\)

14 tháng 7 2018

Ta có \(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)

dấu = xảy ra <=> a=b=\(\sqrt{2}\)

3 tháng 6 2018

Đặt \(x=2a\)và \(y=2b\)suy ra \(\hept{\begin{cases}x>0\\y>0\\x+y\le2\end{cases}}\)

Suy ra : \(A=\frac{x}{y+2}+\frac{y}{x+2}+\frac{2}{x+y}\)

\(\Rightarrow A=\frac{x^2}{xy+2x}+\frac{y^2}{xy+2y}+\frac{2}{x+y}\)

\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(xy+x+y\right)}+\frac{2}{x+y}\)

\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(\frac{\left(x+y\right)^2}{4}+\left(x+y\right)\right)}+\frac{2}{x+y}\)

Đặt \(t=x+y\)(   \(0< t\le2\))

Suy ra :

\(\Rightarrow A\ge\frac{t^2}{\frac{t^2}{2}+2t}+\frac{2}{t}\)

\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{2}{t}\)

\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{4}{3}.\frac{1}{t}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{2t}{t+4}.\frac{4}{3}.\frac{1}{t}}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{8}{3\left(t+4\right)}}+\frac{2}{3}.\frac{1}{t}\)

\(\Rightarrow A\ge2\sqrt{\frac{8}{3.\left(2+4\right)}}+\frac{2}{3}.\frac{1}{2}=\frac{5}{3}\)

"=" xảy ra khi \(x=y=\frac{1}{2}\)