K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

a) Với m = 1 thay vào phương trình ta có: 

\(x^2-4x-1=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{cases}}\)

b) Phương trình có: \(\Delta'=\left(m+1\right)^2-\left(-m^4+m^2-1\right)\)

\(=m^4+2m+2\)

\(=m^4-2m^2+1+m^2+2m+1+m^2\)

\(=\left(m^2-1\right)^2+\left(m+1\right)^2+m^2\ge0\)

=> Phương trình có nghiệm với mọi m 

c) Áp dụng định lí viet ta có: x1 . x2 = -m^4 + m^2 - 1

=> A = m^4 - m^2 + 6 = \(\left(m^2-\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

Dấu "=" xảy ra <=> \(m^2-\frac{1}{2}=0\Leftrightarrow m=\pm\frac{\sqrt{2}}{2}\)

Vậy min A = 23/4  tại \(m=\pm\frac{\sqrt{2}}{2}\)

21 tháng 4 2020

thank bạn nha

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

17 tháng 12 2021

a: Thay m=-3 vào (1), ta được:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

hay x∈{3;-1}

17 tháng 2 2016

b/ Ta có: x1 + x2 = 2m + 2

x1x2 = m - 4

M = x1(1 - x2) + x2(1 - x1) = x1 - x1x2 + x2 - x1x2 = (x1 + x2) - 2x1x2 = (2m + 2) - 2.(m - 4) = 10

Vậy không phụ thuộc vào m

17 tháng 2 2016

mong các bạn sớm giải giúp mình

10 tháng 5 2021

a) Với m = 5 phương trình đã cho trở thành 

x2 - 8x + 7 = 0 

Dễ thấy phương trình trên có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 7

Vậy với m = 5 thì phương trình đã cho có tập nghiệm S = { 1 ; 7 }

b) Ta có : Δ = b2 - 4ac = [ -2( m - 1 ) ]2 - 4( m + 2 )

= 4( m2 - 2m + 1 ) - 4m + 8

= 4m2 - 12m + 12 = 4( m - 3/2 )2 + 3 ≥ 3 > 0 ∀ m

=> Phương trình đã cho luôn có hai nghiệm phân biệt với mọi số thực m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)

Ta có : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)

\(\Rightarrow x_1^2+x_2^2=4x_1x_2\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Rightarrow\left(2m-2\right)^2-6\left(m+2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m-12=0\Leftrightarrow2m^2-7m-4=0\)

Đến đây dễ rồi bạn tự làm tiếp heng :)

a: Δ=(2m+2)^2-4(m-2)

=4m^2+8m+4-4m+8

=4m^2+4m+12

=(2m+1)^2+11>=11>0

=>Phương trình luôn cóhai nghiệm phân biệt

b: x1^2+2(m+1)x2-5m+2

=x1^2+x2(x1+x2)-4m-m+2

=x1^2+x1x2+x2^2-5m+2

=(x1+x2)^2-2x1x2+x1x2-5m+2

=(2m+2)^2-(m-2)-5m+2

=4m^2+8m+4-m+2-5m+2

=4m^2+2m+8

=4(m^2+1/2m+2)

=4(m^2+2*m*1/4+1/16+31/16)

=4(m+1/4)^2+31/4>=31/4

Dấu = xảy ra khi m=-1/4

27 tháng 4 2019

Làm câu b)

Để phương trình có hai nghiệm phân biệt:

\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)

Áp dụng định lí Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)

Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)

Từ 1, 2 ta có:

\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)

Vậy ...

a: a=1; b=2m; c=-1

Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt

b: \(x_1^2+x_2^2-x_1x_2=7\)

=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)

=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)

=>4m^2=7-3=4

=>m^2=1

=>m=1 hoặc m=-1