K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 

 \(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)

b) 

   \(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)

 

5 tháng 4 2017

a)\(m\left(x\right)=x^2+7x-8\)

Cho \(m\left(x\right)=0\Rightarrow x^2+7x-8=0\)

\(\Rightarrow x^2-x+8x-8=0\)

\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+8=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)

b)\(f\left(x\right)=\left(x-3\right)\left(16-4x\right)\)

Cho \(f\left(x\right)=0\Rightarrow\left(x-4\right)\left(16-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\16-4x=0\end{matrix}\right.\)\(\Rightarrow x=4\)

c)\(n\left(x\right)=5x^2+9x+4\)

Cho \(n\left(x\right)=0\Rightarrow5x^2+9x+4=0\)

\(\Rightarrow5x^2+4x+5x+4=0\)

\(\Rightarrow x\left(5x+4\right)+\left(5x+4\right)=0\)

\(\Rightarrow\left(x+1\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)

5 tháng 4 2017

Tuấn Anh Phan Nguyễn

5 tháng 4 2017

Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)

\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)

\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)

Vậy nghiệm của đa thức m(x) là 1 hoặc -8

b) \(\left(x-3\right)\left(16-4x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

Vậy nghiệm của đa thức g(x) là 3 hoặc 4

c) \(5x^2+9x+4=0\)

\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)

\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)

Vậy...

13 tháng 4 2018

\(F\left(x\right)=3x-6;x=\dfrac{6}{3}=2\)

\(H\left(x\right)=-5x+30;x=-\dfrac{30}{5}=-6\)

\(G\left(x\right)=\left(x-3\right)\left(16-4x\right)\Leftrightarrow\left[{}\begin{matrix}x-3=0;x=3\\16-4x=0;x=4\end{matrix}\right.\)

\(K\left(x\right)=x^2-81=\left(x-9\right)\left(x+9\right)\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)

\(M\left(x\right)=x^2+7x-8=\left(x-1\right)\left(x+8\right);\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)

\(N\left(x\right)=5x^2+9x+4\)

\(N\left(x\right)=5x^2+5x+4x+4=5x\left(x+1\right)+4\left(x+1\right)\)

\(N\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)

18 tháng 5 2017

\(M\left(x\right)+N\left(x\right)\)

\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)

\(=2x^4+5x^3-3x^2+2x-3\)

\(M\left(x\right)-N\left(x\right)\)

\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)

\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)

\(=-2x^4+5x^3+x^2-2x-5\)

\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)

\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)

\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)

Vậy nghiệm của M( x ) là \(\frac{1}{4}\)

b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH

TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)

TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)

c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH

TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)

\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)

4 tháng 2 2018

lu ngu

Bài 1: 

a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)

=>2 căn x=6

=>căn x=3

=>x=9

b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)

=>x=1