\(M=5xyz-5x^2+8xy+5\) , \(N=3x^2+2xyz-8xy-7+y^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2022

a, Ta có  \(M+N=7xyz-2x^2-2+y^2\)

 \(M-N=3xyz-8x^2+16xy+12-y^2\)

\(N-M=8x^2-3xyz-16xy-12+y^2\)

a) tự tính nhé dễ mà

b) M + N = 5xyz - 5x2 + 8xy + 5 + 3x2 + 2xyz - 8xy - 7 + y2

              = 5xyz + 2xyz + (-5x2 + 3x2) + 8xy - 8xy  + y2 + 5 - 7

              = 7xyz - 2x2 + y2 - 2

M - N và N - M làm tương tự nhé

7 tháng 3 2017

M+N=(5xyz-5x\(^2\)+8xy+5) + (3x\(^2\)+2xyz-8xy-7+y\(^2\))

=(5xyz+2xyz)-(5x\(^2\)+3x\(^2\))+(8xy-8xy)+(5-7)

=7xyz-2x\(^2\)-2

Mk lm cho bn tương tự bn lm như z ý k khó đâu

Chúc bạn học tốt!thanghoa

7 tháng 3 2017

M+N=(5xyz -5x2 +8xy+5)+(3x2 +2xyz -8xy-7+y2)

=5xyz -5x2 +8xy+5+3x2 +2xyz -8xy-7+y2

=(5xyz-2xyz)+(5x2+3x2)+(8xy-8xy)+(5-7)+y2

=3xyz+8x2+0+(-2)+y2

=3xyz+8x2+(-2)

M-N=(5xyz -5x2 +8xy+5)-(3x2 +2xyz -8xy-7+y2)

=5xyz -5x2 +8xy+5-3x2 +2xyz -8xy-7+y2

=(5xyz-2xyz)-(5x2+3x2)+(8xy-8xy)+(5-7)+y2

=3xyz-8x2+0+(-2)+y2

N-M=(3x2 +2xyz -8xy-7+y2)-(5xyz -5x2 +8xy+5)

=3x2 +2xyz -8xy-7+y2-5xyz -5x2 +8xy+5

=(3x2-5x2)+(2xyz-5xyz)-(8xy-8xy)-(7+5)+y2

=-2x2+(-3xyz)-0-12+y2

26 tháng 3 2018

a, P = A + B = (5x\(^2\) - 3xy + 7y\(^2\)) + (6x\(^2\) - 8xy + 9y\(^2\))

= 5x\(^2\) - 3xy + 7y\(^2\) + 6x\(^2\) - 8xy + 9y\(^2\)

= (5x\(^2\) + 6x\(^2\)) + (-3xy - 8xy) + (7y\(^2\) + 9y\(^2\))

= 11x\(^2\) - 11xy + 16y\(^2\)

Q = A - B = (5x\(^2\) - 3xy + 7y\(^2\)) - (6x\(^2\) - 8xy + 9y\(^2\))

= 5x\(^2\) - 3xy + 7y\(^2\) - 6x\(^2\) + 8xy - 9y\(^2\)

= (5x\(^2\) - 6x\(^2\)) + (-3xy + 8xy) + (7y\(^2\) - 9y\(^2\)) = -x\(^2\) + 5xy - 2y\(^2\)

b, M = P - Q = (11x\(^2\) - 11xy + 16y\(^2\)) - (-x \(^2\)+ 5xy - 2y\(^2\))

= 11x\(^2\) - 11xy + 16y\(^2\) + x\(^2\) - 5xy + 2y\(^2\)

= (11x\(^2\) + x\(^2\)) + (-11xy - 5xy) + (16y\(^2\) + 2y\(^2\))

= 12x\(^2\) - 16xy + 18y\(^2\)

Thay x = 1 , y = 2 vào biểu thức M

Ta có : M = 12x\(^2\) - 16xy + 18y\(^2\)

= 12 . 1\(^2\) - 16 . 1 . 2 + 18 .2\(^2\)

= 12 - 32 + 72

= 52

1 tháng 4 2018

Cộng, trừ đa thức

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$

$=6x^5-2x^4-4x^3+3x$

$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$

$=-6x^5+2x^4+4x^3+4x^2-3x-1$

b)

$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$

$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$

$=213$

c)

$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=4x^2-1$

$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=12x^5-4x^4-8x^3-4x^2+6x+1$

d)

$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$

$\Leftrightarrow x=\pm \frac{1}{2}$

Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$

26 tháng 3 2018

* Đa thức thu gọn là đa thức không còn hai hạng tử nào đồng dạng

A = (xy7- xy7) + (x3y5-x3y5)+x8+10

A = x8+10

* M + N

= (5xyz -5x2 + 8xy + 5)+(5x2+2xyz-8xy-7+y2)

= 5xyz - 5x2 +8xy +5+5x2 +2 xyz - 8xy -7 + y2

= ( 5xyz + 2xyz ) + ( -5x2 +5x2) + ( 8xy - 8xy ) + ( 5-7) +y2

= 7xyz - 2 + y2

* M - N

= ( 5xyz - 5x2 +8xy +5) - ( 5x2 + 2xyz - 8xy -7 +y2)

= 5xyz - 5x2 + 8xy + 5 - 5x2 - 2xyz + 8xy + 7 - y2

= ( 5xyz - 2xyz) + ( -5x2 - 5x2) + ( 8xy + 8xy) + ( 5+7) -y2

= 3xyz - 10x2 +16xy +12 -y2

26 tháng 3 2018

Thanks

19 tháng 4 2017

Ta có:

M = 3xyz - 3x2 + 5xy - 1

N = 5x2 + xyz - 5xy + 3 - y

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.



19 tháng 3 2018

M = 3xyz - 3x2 + 5xy - 1

N = 5x2 + xyz - 5xy + 3 - y

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.

16 tháng 3 2017

\(M+N=3x^2-5y^3+2x^2+y^3-1\)

\(=\left(3x^2+2x^2\right)+\left(-5y^3+y^3\right)-1\)

\(=5x^3-4y^3-1\)

\(M-N=3x^2-5y^3-2x^2-y^3+1\)

\(=\left(3x^2-2x^2\right)+\left(-5y^3-y^3\right)+1\)

\(=x^2-6y^3+1\)

1 tháng 3 2017

1a) \(10^{n+1}-6\cdot10^n\)

\(=10^n\cdot10-6\cdot10^n\)

= \(10^n\left(10-6\right)\)

\(=10^n\cdot4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n\cdot2^3+2^n\cdot2^2-2^n\cdot2+2^n\)

\(=2^n\left(2^3+2^2-2+1\right)\)

\(=2^n\cdot11\)

c) \(90\cdot10^k-10^{k+2}+10^{k+1}\)

\(=90\cdot10^k-10^k\cdot10^2+10^k\cdot10\)

\(=10^k\left(90-10^2+10\right)=0\)

d) \(2,5\cdot5^{n-3}\cdot10+5^n-6\cdot5^{n-1}\)

\(=\dfrac{2,5\cdot10\cdot5^n}{5^3}+5^n-\dfrac{6\cdot5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6\cdot5^n}{5}\)

\(=\dfrac{5^n+5^n\cdot5-6\cdot5^n}{5}=\dfrac{5^n\left(5-6\right)+5^n}{5}=0\)

2. \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)

\(M=\left(7x^2-8xy+y^2\right)-\left(6x^2-4xy\right)\)

\(M=7x^2-8xy+y^2-6x^2+4xy\)

\(M=7x^2-6x^2-8xy+4xy+y^2\)

\(M=x^2-4xy+y^2\)

1 tháng 3 2017

Mk cảm ơn bn nhiều lắm ạ Lê Mỹ Linh