\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

P(x) = 3x4 + x- 2x2 + x- 1/4x

Bậc: 4

Hệ số cao nhất: 3

Hệ số tự do: không có :v

Q(x) = 3x4 - 4x3 + 3x2 - 2x2 - 1/4

Bậc: 4

Hệ số cao nhất: 4

Hệ số tự do: 1/4

a) P(x) + Q(x) = 3x4 + x3 - 2x2 + x2 - 1/4x + 3x4 - 4x3 + 3x- 2x2 - 1/4

                       = (3x4 + 3x4) + (x3 - 4x3) + (-2x2 + x2 + 3x2 - 2x2) - 1/4x - 1/4

                       = 6x4 - 3x3 - 1/4x - 1/4

P(x) - Q(x) = (3x4 + x3 - 2x2 + x2 - 1/4x) - (3x4 - 4x3 + 3x2 - 2x2 - 1/4)

                  = 3x4 + x3 - 2x2 + x2 - 1/4x - 3x4 + 4x3 - 3x2 + 2x2 + 1/4

                  = (3x4 - 3x4) + (x3 + 4x3) + (-2x2 + x2 - 3x2 - 2x2) - 1/4x + 1/4

                  = 5x3 - 2x2 - 1/4x + 1/4

Q(x) - P(x) = (3x4 - 4x3 + 3x2 - 2x2 - 1/4) - (3x4 + x3 - 2x2 + x2 - 1/4x)

                  = 3x4 - 4x3 + 3x2 - 2x2 - 1/4 - 3x4 - x3 + 2x2 - x2 + 1/4x

                  = (3x4 - 3x4) + (-4x3 - x3) + (3x2 - 2x2 + 2x2 - x2) + 1/4 + 1/4x

                  = -5x3 + 2x2 - 1/4 + 1/4x

b) M(x) = P(x) - Q(x)

            = 5x3 - 2x2 - 1/4x + 1/4

M(-2) = 5.(-2)3 - 2.(-2)2 - 1/4.(-2) + 1/4

          = -40 - 8 + 1/2 + 1/4

          = -189/4

sai đâu sửa hộ nha

15 tháng 3 2020

đúng rùi ớ

11 tháng 6 2020

cảm ơn bn nhìungaingunghaha

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

28 tháng 4 2017

Bạn thay 0 vào rồi ra P(0) = 0 và Q(0) = -1/4

=> x = 0 là nghiệm của P(x) nhưng ko là nghiệm của Q(x)

28 tháng 4 2017

. Cảm ơn bạn nha ♥

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn: P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2 a) Xác định đa thức P(x) và Q(x) b) Tìm nghiệm của đa thức P(x) và Q(x) c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2 Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
11 tháng 5 2019

Ta có: P(x)+ Q(x)= x^3+ x^2-4x+2(1)

P(x)- Q(x)= x^3-x^2+2x-2(2)

Lấy (1)-(2)

=> P(x)+ Q(x)- P(x)+ Q(x)

= 2Q(x)

=>2Q(x)=(x^3+x^2-4x+2)- (x^3-x^2+2x-2)

=>2Q(x)= 2x^2-6x-2

=> Q(x)= x^2-3x-1

Vậy P(x)=....

19 tháng 1 2017

a) Sắp xếp theo luỹ thừa giảm dần của biến:

2016-02-29_222337

b) Từ đa thức được sắp xếp ở trên ta thực hiện phép tính:

2016-02-29_222348

c) Thay x = 0 vào đa thức P(x) ta được P(0) = 0 ⇒ x = 0 là nghiệm của đa thức P(x)

Thay x = 0 vào đa thức Q(x) ta được Q(0) = -1/4 ≠ 0 ⇒ x = 0 không phải là nghiệm của đa thức Q(x).

19 tháng 1 2017

t​uyệt vời ông mặt trờibatngo

a: \(=\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+18\)

Hệ số cao nhất là 80/9

Hệ số tự do là 18

Bậc là 3

b: \(f\left(3\right)=\dfrac{80}{9}\cdot27+\dfrac{1}{3}\cdot9-\dfrac{1}{3}\cdot3+18=260\)

\(f\left(-3\right)=\dfrac{80}{9}\cdot\left(-27\right)+\dfrac{1}{3}\cdot9+\dfrac{1}{3}\cdot3+18=-218\)

c: f(x)=-28 nên \(\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+46=0\)

\(\Leftrightarrow x\simeq-1.75\)

8 tháng 7 2018

câu a) \(A=3x^3+7x^2+3x-\left(\dfrac{1}{4}+3x^3\right)-3\dfrac{3}{4}\)

\(\Leftrightarrow A=3x^3+7x^2+3x-\dfrac{1}{4}-3x^3-\dfrac{15}{4}\)

\(\Leftrightarrow A=7x^2+3x-4\)

\(B=x\left(x^2-x+1\right)-\dfrac{1}{2}x^2\left(2x-4\right)-2\)

\(\Leftrightarrow B=x^3-x^2+x-x^3+2x^2-2\)

\(\Leftrightarrow B=x^2+x-2\)

câu b) chỉ cần thế \(x=-1\) vào biểu thức \(A\) \(\Rightarrow\) tính

và thế \(x=\dfrac{1}{2}\) vào biểu thức \(B\) \(\Rightarrow\) tính

câu c) ta có \(B+M=A\Leftrightarrow x^2+x-2+M=7x^2+3x-4\)

\(\Leftrightarrow M=7x^2+3x-4-\left(x^2+x-2\right)=6x^2+2x-2\)

câu d) ta có : \(\dfrac{x+5}{-3}=\dfrac{x}{2}\Leftrightarrow2\left(x+5\right)=-3x\Leftrightarrow2x+10=-3x\)

\(\Leftrightarrow5x=-10\Leftrightarrow x=-2\)

thế \(x=-2\) vào \(M=6x^2+2x-2=6.\left(-2\right)^2+2\left(-2\right)-2=18\)

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x