Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
Bài 1:
a) Cho đa thức \(G\left(x\right)=-x-8=0\)
\(\Rightarrow-x=8\)
\(\Rightarrow x=-8\)
Vậy -8 là nghiệm của đa thức G(x).
b)Ta có: \(C\left(-2\right)=m.\left(-2\right)^2+2.\left(-2\right)+16=0\)
\(\Rightarrow C\left(x\right)=4m-4+16=0\)
\(\Rightarrow4m=-12\)
\(\Rightarrow m=-3\)
Bài 2.
a) Cho B(y)=-3y+5=0
\(\Rightarrow y=\dfrac{5}{3}\)
b) M(x)=2x2+1
Ta có: 2x2\(\ge0\)
nên: M(x)=2x2+1 \(\ge1\)
\(\Rightarrow M\left(x\right)\) không có nghiệm.
Các bài sau tương tự, không khó đâu bạn. Chúc bạn học tốt!
Bài 1:
a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)
\(m.\left(-1\right)\) \(=2+3\)
\(m.\left(-1\right)\) \(=5\)
\(m\) \(=5:\left(-1\right)\)
\(m\) \(=-5\).
b)Có \(-1\) là nghiệm của đa thức D(x).
=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)
<=> \(\left(-2\right)-a+7a+3=0\)
<=> \(\left(-2\right)-a+7a=-3\)
<=> \(-a+7a=-2-3\)
<=> \(-a+7a=-5\)
<=> \(\left(-1+7\right)a=-5\)
<=> \(6a=-5\)
<=> a= \(\frac{-5}{6}\)
B2;
a)\(x^2+x+1\)
=(\(x^2+0,5x\))+(0,5x+0,25)+0,75
=x(x+0,25)+0,5(x+0,5)+0,75
=\(\left(x+0,5\right)^2\)+0,75.
Mà \(\left(x+0,5\right)^2\ge0\)
=>\(x^2+x+1\) không có nghiệm.
b)\(x^2+2x+2\)
=\(x^2+x+x+1+1\)
=\(\left(x^2+x\right)+\left(x+1\right)+1\)
=\(x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x+1\right)\left(x+1\right)+1\)
=\(\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\)
=> \(x^2+2x+2\) không có nghiệm.
c)\(-x^2+2x-3\)
=\(-\left(x^2-2x+3\right)\)
=\(-\left(x^2-2.x.1+2+1\right)\)
=\(-\left[\left(x-1\right)^2+2\right]\)
=\(-\left(x-1\right)^2-2\)
Mà \(\left(x-1\right)^2\le0\)
=> \(-x^2+2x-3\) không có nghiệm.
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
day la bai toan co ban bạn cho da thuc =0 roi bạn thay x= -1 la tim dc m
mk lam cho bạn bai dau nhé;
m(-1) + 1 - 1 +1 = 0
m =1
vay nhe quỳnh
a)Theo đề bài ta có:\(A\left(x\right)=ax^2+x-3\) có ngiệm là \(\dfrac{1}{2}\)
=>\(A\left(\dfrac{1}{2}\right)=a\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{5}{2}\)
\(\Leftrightarrow a=\dfrac{5}{2}:\dfrac{1}{4}=10\)
vậy hệ số a=10
b)Theo đề bài ta có: \(Q\left(x\right)=mx^2-2mx-3\) có nghiệm x=-1
=>\(Q\left(-1\right)=m\left(-1\right)^2-2m\left(-1\right)-3=0\)
\(\Leftrightarrow m+2m-3=0\)
\(\Leftrightarrow3m=3\Leftrightarrow m=1\)
Vậy hệ số m của đa thức là 1
Đặt C(X)=0
=>x3=1
=>x=1
Vì nghiệm của C(x) cũng là nghiệm của D(x) nên D(1)=0
=>m-2-1=0
=>m=3