K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 7 2019
2. Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)
= \(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
= \(3^n.10-2^{n-1}.10\)
= \(\left(3^n-2^{n-1}\right).10⋮10\forall n\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
2.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+....+\dfrac{1}{n.n}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{\left(n-1\right).n}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
You k làm đc bài 1 ak -_- làm full cho người ta đi chớ :v
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)
\(\Rightarrow ac+bc=2ab\)
\(\Rightarrow ac+bc-ab=ab\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\left(đpcm\right)\)