Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
à bài này làm r` ở bên đây nè :D có cả 2 cách
Câu hỏi của Phúc Long Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Chứng minh bổ đề: \(\dfrac{4x}{3-4x^2}\ge4x^2\)
\(\Leftrightarrow1+4x^3\ge3x\)
\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3x\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3\sqrt[3]{\dfrac{4x^3}{4}}=3x\left(đpcm\right)\)
Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có
\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)
Vậy \(P_{min}=3\)
Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)
câu 2 : ta có : \(\left(x^2+x+2\right)^2-\left(x+1\right)^3=x^6+1\)
\(\Leftrightarrow x^6+\left(x+1\right)^3=\left(x^2+x+2\right)^2-1\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^4-x^3+2x+1\right)-\left(x^2+x+1\right)\left(x^2+x+3\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^4-x^3-x^2+x-2\right)=0\)
ta có : \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
\(\Rightarrow pt\Leftrightarrow x^4-x^3-x^2+x-2=0\)
giờ dùng pp đại số chuyển nó thành tích rồi giải bt
Bài 3 : Ta có BĐT : \(x^2+y^2+z^2\ge xy+yz+zx=1\)
Theo BĐT Cauchy schwarz dưới dạng engel ta có :
\(P=\dfrac{1}{4x^2+yz+2}+\dfrac{1}{4y^2+xz+2}+\dfrac{1}{4z^2+xy+2}\ge\dfrac{\left(1+1+1\right)^2}{4\left(x^2+y^2+z^2\right)+\left(xy+yz+zx\right)+6}=\dfrac{9}{4+1+6}=\dfrac{9}{11}\)
Vậy GTNN của P là \(\dfrac{9}{11}\) . Dấu \("="\) xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)