Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt sina=a; cosa=b
Theo đề, ta có: \(\left\{{}\begin{matrix}a+b=1.4\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow ab=\dfrac{1.4^2-1}{2}=0.48\)
=>a,b là các nghiệm của pt là:
\(x^2-1.4x+0.48=0\)
=>x=0,6 hoặc x=0,8
=>(a,b)=(0,6;0,8) hoặc (a,b)=(0,8;0,6)
TH1: a=0,6; b=0,8
tan a=a/b=3/4
TH2: a=0,8; b=0,6
tan a=a/b=4/3
a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#
a, ta có \(\cos^2\alpha\)+ \(\sin^2\alpha\)= 1
1/5 + \(\cos^2\alpha\)= 1
\(\cos^2\alpha\)= 4/5
\(4\cos^2\alpha\)+6 \(\sin^2\alpha\)= 4 . 4/5 + 6.1/5=22/5
b, \(\sin\alpha\)= 2/3
\(\sin^2\alpha\)= 4/9
\(\cos^2\alpha=\frac{5}{9}\)
\(5\cos^2\alpha+2\sin^2=\frac{5.5}{9}+\frac{2.4}{9}=\frac{33}{9}\)
#mã mã#
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha+\left(\frac{7}{5}-\sin\alpha\right)^2=1\)
\(\Rightarrow25\sin^2\alpha-35\sin\alpha+12=0\)
\(\Rightarrow\left(5\sin\alpha-4\right)\left(5\sin\alpha-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sin\alpha=\frac{4}{5}\\\sin\alpha=\frac{3}{5}\end{cases}}\)
Nếu \(\sin\alpha=\frac{4}{5}\)thì \(\cos\alpha=\frac{3}{5}\Rightarrow\tan\alpha=\frac{4}{3}\)
Nếu \(\sin\alpha=\frac{3}{5}\)thì \(\cos\alpha=\frac{4}{5}\Rightarrow\tan\alpha=\frac{3}{4}\)
Tk cho mk bạn nhá
đặt \(\sin\alpha=a;\cos\alpha=b\)
khi đó:
\(a+b=\frac{7}{5}\Leftrightarrow a^2+b^2+2ab=\frac{49}{25}\)
\(\Leftrightarrow1+2ab=\frac{49}{25}\Leftrightarrow2ab=\frac{24}{25}\Leftrightarrow ab=\frac{12}{25}\)
ta có
\(\left\{{}\begin{matrix}a+b=\frac{7}{5}\\ab=\frac{12}{25}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left(\frac{7}{5}-b\right)b=\frac{12}{25}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\b^2-\frac{7}{5}b+\frac{12}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left(b-\frac{3}{5}\right)\left(b-\frac{4}{5}\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left[{}\begin{matrix}b=\frac{3}{5}\\b=\frac{4}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\frac{3}{5}\\b=\frac{4}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\frac{4}{5}\\b=\frac{3}{5}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{3}{4}\\\frac{a}{b}=\frac{4}{3}\end{matrix}\right.\)\(\)
hay tan \(\alpha\approx37^o\)hoặc tan\(\alpha\approx53^o\)
Lời giải:
Ta có: \(\left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ \sin ^2a+\cos ^2a=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ (\sin a+\cos a)^2-2\sin a\cos a=1\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ (\frac{7}{5})^2-2\sin a\cos a=1\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} \sin a+\cos a=\frac{7}{5}\\ \sin a\cos a=\frac{12}{25}\end{matrix}\right.\)
\(\Rightarrow \sin a(\frac{7}{5}-\sin a)=\frac{12}{25}\)
\(\Leftrightarrow \sin ^2a-\frac{7}{5}\sin a+\frac{12}{25}=0\)
\(\Leftrightarrow (\sin a-\frac{4}{5})(\sin a-\frac{3}{5})=0\Rightarrow \left[\begin{matrix} \sin a=\frac{4}{5}\\ \sin a=\frac{3}{5}\end{matrix}\right.\)
Nếu \(\sin a=\frac{4}{5}\Rightarrow \cos a=\frac{3}{5}\Rightarrow \tan a=\frac{\sin a}{\cos a}=\frac{4}{3}\)
Nếu \(\sin a=\frac{3}{5}\rightarrow \cos a=\frac{4}{5}\Rightarrow \tan a=\frac{\sin a}{\cos a}=\frac{3}{4}\)
bài này bn có thể biến đổi sao cho bt được giá trị của tổng và tích giữa \(sinx;cosx\) như cô Akai rồi sử dụng viét đảo để giải tiếp nha