Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M a) Xét tam giác BAM và tam giác CAM có : BA = CA (GT) Góc BAM=góc CAM ( vì : AM là tia phân giác của góc BAC ) AM là cạnh chung Do đó: tam giác BAM = tam giác CAM(c.g.c) b) vì tam giác BAM = tam giác CAM (câu a) => góc AMB = góc AMC ( hai góc tương ứng) Mà : hai góc đó là hai góc kề bù Nên: Góc AMB=góc CAM = 90 độ => AM vuông góc với BC. D C) Xét tam giác BAD và tam giác CAD có: AB=AC( GT) BD=CD(GT) AD là cạnh chung =>Do đó :tam giác BAD=tam giác CAD(c.c.c) => AD là tia phân giác của góc A ( vì góc BAD=góc CAD) Nên: ba điểm A,D,M thẳng hàng => AM là đường trung trực của BC => AD cũng là đường trung trực của BC
a, vì ab =ac (gt)
=> abc là tam giác cân tại a
vì tam giác abc cân tại a
=> góc b = góc c
vì m là trung điểm bc
=> bm = mc
xét tam giác amb và tam giác amc có
bm =mc
góc b = góc c
ab = ac
=> tam giác amb = tam giác amc (cgc)
b, vì 2 tam giác chứng minh ở câu a bằng sau
=> bam = cam( cặp góc tương ứng)
=> am là tia p/g của bac
a,Xét tam giác ABM với ACM có; AM chung AB=AC(gt) BM=MC(gt) =>tam giác ABM=ACM (c.c.c)(đpcm) b,Vì 2 tam giác trên bằng nhau =>AMB=AMC Mà 2 góc kề bù =>góc AMB=AMC=90 độ =>AM vuông góc BC(đpcm) c,Xét tam giác DBM vs DCM có:DM chung DB=DC(gt) BM=MC(gt) =>tam giác DBM=DCM(c.c.c) Mà 2 góc kề bù=>DBM=DCM=90 độ =>3 điểm A,M,D thẳng hàng(đpcm)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a) Xét ∆ABC có : .
AM là trung tuyến
=> ∆ABC cân tại A , trung tuyến AM vừa là trung trực vừa là phân giác
b) Vì AM là trung trực ∆ABC
=> AMC = 90°
Xét ∆BDC có :
DM là trung tuyến
=> ∆BDC cân tại D , trung tuyến DM là trung trực và là phân giác
=> DMC = 90°
Ta có :
AMD = AMC + DMC
AMD = 90° + 90° = 180°
=> AMD là góc bẹt
=> A, M , D thẳng hàng