Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. \(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)
\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)
\(=a^{2008}\left(a^2-1\right)\left(a^2+1\right)+b^{2008}\left(b^2-1\right)\left(b^2+1\right)+c^{2008}\left(c^2-1\right)\left(c^2+1\right)\)
\(=a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)
Dễ thấy a-1, a, a+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 3 \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
Tương tự đối với b và c ta suy ra \(A⋮6\) (1)
Xét các số dư của a cho 5
- Nếu \(a⋮5\) thì \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 1 thì \(\left(a-1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 2 hoặc 3 thì \(\left(a^2+1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 4 thì \(\left(a+1\right)⋮5\) nên \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
Như vậy \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\) \(\forall a\in Z_+\)
Tương tự \(\left[b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)\right]⋮5\)
và \(\left[c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\right]⋮5\)
Do đó \(A⋮5\) (2)
Từ (1) và (2) suy ra \(A⋮30\)
\(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)
\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)
- Chứng minh A chia hết cho 2 : Nếu a,b,c là các số lẻ thì a4-1 , b4-1 , c4-1 là các số chẵn
=> A là số chẵn => A chia hết cho 2
Nếu a,b,c là các số chẵn thì dễ thấy A là số chẵn => A chia hết cho 2
Vậy A chia hết cho 2
- Chứng minh A chia hết cho 5 :
Xét số tự nhiên n không chia hết cho 5 , chứng minh n4-1 chia hết cho 5
Ta có : \(n=5k\pm1,n=5k\pm2\)với k là số tự nhiên
\(n^2\)có một trong hai dạng \(n^2=5k+1\)hoặc \(n^2=5k+4\)
\(n^4\)có dạng duy nhất : \(n^4=5k+1\Rightarrow n^4-1⋮5\)
Áp dụng với n = a,b,c được A chia hết cho 5
- Chứng minh A chia hết cho 3
Xét với n là số chính phương thì n2 chia 3 dư 0 hoặc 1
Do đó, nếu n2 chia 3 dư 0 thì dễ thấy A chia hết cho 3 với n = a,b,c
Nếu n2 chia 3 dư 1 thì n4 chia 3 dư 1 => n4-1 chia hết cho 3 => A chia hết cho 3 với n = a,b,c
Vậy n chia hết cho 2,3,5 mà (2,3,5) = 1 => A chia hết cho 30
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)