Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phần lần lượt là a, b, c. Theo đề bài ta có :
$0,2a=3\dfrac{1}{3}b=\dfrac{4}{5}c$
$=>\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c$
$=>\dfrac{a}{5}=\dfrac{10b}{3}=\dfrac{4c}{5}$
$=>\dfrac{a}{5}.15=\dfrac{10b}{3}.15=\dfrac{4c}{5}.15$
$=>3a=50b=12c$
$=>\dfrac{3a}{300}=\dfrac{50b}{300}=\dfrac{12c}{300}$
$=>\dfrac{a}{100}=\dfrac{b}{6}=\dfrac{c}{25}=\dfrac{a+b+c}{100+6+25}=\dfrac{393}{131}=3$ (tính chất dãy tỉ số bằng nhau)
$=>a=3.100=300$
$b=3.6=18$
$c=3.25=75$
Vậy ta chia 393 thành 3 phần là : 300 ; 18 ; 75.
Chúc bạn học tốt ^_^
x,y tỉ lệ thuận với \(\dfrac{3}{4}\) và \(\dfrac{4}{3}\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{x+y}{\dfrac{3}{4}+\dfrac{4}{3}}=-\dfrac{50}{\dfrac{25}{12}}=-24\)
\(\dfrac{x}{\dfrac{3}{4}}=-24\Rightarrow x=-18\)
\(\dfrac{y}{\dfrac{4}{3}}=-24\Rightarrow y=-32\)
Vì x tỉ lệ thuận với \(\dfrac{3}{4}\)\(\Rightarrow x=\dfrac{3}{4}.k\)
Vì y tỉ lệ thuận với \(\dfrac{4}{3}\Rightarrow y=\dfrac{4}{3}.k\)
\(\Rightarrow x+y=\dfrac{3}{4}.k+\dfrac{4}{3}.k\)
Mà x+y=50
\(\Rightarrow\dfrac{3}{4}.k +\dfrac{4}{3}.k=-50\)
\(\Rightarrow\left(\dfrac{3}{4}+\dfrac{4}{3}\right).k=-50\)
\(\Rightarrow\dfrac{25}{12}.k=-50\)
\(\Rightarrow k=-50:\dfrac{25}{12}\)
\(\Rightarrow k=-24\)
\(\Rightarrow x=\dfrac{3}{4}.\left(-24\right)=-18\)
Tick mk nha!!!
\(y=\dfrac{4}{3}.\left(-24\right)=-32\)
Vậy \(x=-18,y=-32\)
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
a) \(\dfrac{-x}{112}=\dfrac{-7,5}{7}\Leftrightarrow7.\left(-x\right)=-7,5.112\Leftrightarrow-7x=-840\Leftrightarrow x=\dfrac{-840}{-7}=120\)
vậy \(x=120\)
b) \(\dfrac{\dfrac{7}{5}}{1,6}=\dfrac{x}{1,9}\Leftrightarrow1,6.x=\dfrac{7}{5}.1,9\Leftrightarrow1,6x=\dfrac{133}{50}\Leftrightarrow x=\dfrac{133}{50.1,6}=\dfrac{133}{80}\)
vậy \(x=\dfrac{133}{80}\)
a. \(\dfrac{-x}{112}=\dfrac{-7,5}{7}\)
\(\Leftrightarrow\left(-7,5\right).112=\left(-x\right)7\)
\(\Leftrightarrow-840=\left(-x\right)7\)
\(\Leftrightarrow-x=\left(-840\right):7\)
\(\Leftrightarrow-x=-120\)
Vậy ...........
b. \(\dfrac{\dfrac{7}{5}}{1,6}=\dfrac{x}{1,9}\)
\(\Leftrightarrow\dfrac{1,4}{1,6}=\dfrac{x}{1,9}\)
\(\Leftrightarrow1,6.x=1,4.1,9\)
\(\Leftrightarrow1,6x=2,66\)
\(\Leftrightarrow x=2,66:1,6\)
\(\Leftrightarrow x=1,6625\)
Vậy ...
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
Nếu:
\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\Leftrightarrow c\left(a+b\right)=a\left(c+d\right)\)
\(ac+bc=ac+ad\)
\(bc=ad\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)
Đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k
=> a=k.b ; c=k.d
Ta có :
\(\dfrac{a+b}{a}\)=\(\dfrac{b.k+b}{b}\)=\(\dfrac{b.\left(k+1\right)}{b}\)=k+1 ( 1 )
\(\dfrac{c+d}{c}\)=\(\dfrac{d.k+d}{d}\)=\(\dfrac{d.\left(k+1\right)}{d}\)=k+1 ( 2 )
Từ (1) và (2) thì : \(\dfrac{a+b}{a}\)=\(\dfrac{c+d}{c}\)
Theo bài ra, ta có:
\(a-b=3\Rightarrow a=b+3\)
Thay \(a=b+3\) vào \(B\), ta có:
\(B=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\\ B=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ B=1-\dfrac{3b+12}{3b+12}\\ B=1-1\\ B=0\)
Vậy: \(B=0\)
---
Chúc bạn học tốt
theo bài ra ta có:
\(B=\frac{a-8}{b-5}-\frac{4a-b}{3a+3}\)
\(\Rightarrow B=\frac{a-8}{b-5}-1-\frac{4a-b}{3a+3}+1\)
\(\Rightarrow B=\left(\frac{a-8}{b-5}-1\right)+\left(1-\frac{4a-b}{3a+3}\right)\)
\(\Rightarrow B=\frac{a-8-\left(b-5\right)}{b-5}+\frac{3a+3-\left(4a-b\right)}{3a+3}\)
\(\Rightarrow B=\frac{a-8-b+5}{b-5}+\frac{3a+3-4a+b}{3a+3}\)
\(\Rightarrow B=\frac{a-b-8+5}{b-5}+\frac{b-a+3}{3a+3}\) \(\Rightarrow B=\frac{3-3}{b-5}+\frac{-3+3}{3a+3}\)
\(\Rightarrow B=0+0\\ \Rightarrow B=0\)
vậy B = 0
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
thanks