Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị lớn nhất của biểu thức frac{\sqrt{x}}{x+1} là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Áp dụng BĐT Svac - xơ:
\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)
\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\)\(\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)
Ta lại có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+\)\(3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=\)\(a^3+b^3+c^3+24abc\)
Lúc đó: \(T\ge\frac{1}{a+b+c}=1\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
\(A=-x+\sqrt{x}+2\left(ĐK:x\ge0\right)\\ =-\left(x-\sqrt{x}-2\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}-\frac{9}{4}\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{9}{4}\\ =-\left(\sqrt{x}-\frac{1}{2}\right)^2+2,25\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\) với mọi x\(\ge\)0
=> \(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\) vowis mọi x\(\ge0\)
=> \(-\left(x-\frac{1}{2}\right)^2+2,25\le2,25\) với mọi x\(\ge0\)
Vậy GTLN của A là 2,25 khi x=\(\frac{1}{2}\)
GTNN của P là \(\frac{15}{2}\). Đẳng thức xảy ra khi và chỉ khi a=1/3;b=4/5;c=3/2.
Thần Đồng Đất Việt cái tên nghe hay lắm mà chả có óc!