Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOAI=ΔOBI
b: Ta có: ΔOAI=ΔOBI
nên OA=OB
hay O nằm trên đường trung trực của AB(1)
Ta có: ΔOAI=ΔOBI
nên IA=IB
hay I nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OI là đường trung trực của AB
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
b: Xét ΔOAD vuông tại A và ΔOBC vuông tại B có
OA=OB
\(\widehat{BOC}\) chung
Do đó: ΔOAD=ΔOBC
Suy ra: OD=OC
Xét ΔOIC và ΔOID có
OC=OD
\(\widehat{COI}=\widehat{DOI}\)
OI chung
Do đó: ΔOIC=ΔOID
c: Ta có: ΔOCD cân tại O
mà OI là đường phân giác
nên OI là đường cao
a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
b: Xét ΔOBC vuông tại B và ΔOAD vuông tại A có
OB=OA
\(\widehat{BOC}\) chung
Do đó: ΔOBC=ΔOAD
Suy ra: OC=OD
Xét ΔOIC và ΔOID có
OI chung
\(\widehat{COI}=\widehat{DOI}\)
OC=OD
Do đó: ΔOIC=ΔOID
c: Ta có: ΔOCD cân tại O
mà OI là đường phân giác
nên OI là đường cao
O y x I B C A
a,xét \(\Delta vuôngAOI\left(gócOAI=90độ\right)\) và \(\Delta vuôngBOI \left(gócIBO=90độ\right)\)có:
OI chung
góc AOI=góc IOB(gt)
=>\(\Delta vuôngAOI=\Delta vuôngBOI\)(cạnh huyền-góc nhọn)
b,=>OA=OB(2 cạnh t/ứng)
=>\(\Delta AOB\)cân tại O(đ/l tg cân)
có OI là tia phân giác của góc xOy(gt)
=>OI là đng trung trực của tam giác OAB(trường hợp đặc biệt của tg cân)
c,I'm thinking
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC
Xét tam giác OBM và tam giác OAM có:
OA=OB; góc BOM=góc AOM; OM chung
=> Tam giác OBM= tam giác OAM
=> MA=MB