K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Ta có :

\(P+1=x+y+xy+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left[\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right]\)

\(=\frac{b^2+2ab+c^2-a^2}{2bc}.\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\)

\(=\frac{\left(b+c\right)^2-\left(b-c\right)^2}{2bc}=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)

\(\Rightarrow P=2-1=1\)

9 tháng 9 2017

\(\dfrac{a}{\left(x+1\right)^3}+\dfrac{b}{\left(x+1\right)^2}=\dfrac{a+b\left(x+1\right)}{\left(x+1\right)^3}=\dfrac{b+a+b}{\left(x+1\right)^3}\)

\(\Rightarrow\left\{{}\begin{matrix}b=3\\a+b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=3\\a=-2\end{matrix}\right.\)

Mở rộng : Phương pháp giải bài tập trên là dùng phương pháp đồng nhất hệ số . Đây là phương pháp rất có hiệu quả trong việc phân tích đa thức thành nhân tử

2 tháng 8 2017

ĐK \(x\ne\left\{-2;2\right\}\)

a. Ta có \(A=\left(\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\frac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}:\frac{x^2-4+10-x^2}{x+2}=-\frac{6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=-\frac{1}{x-2}\)

b. Ta có \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Với \(x=\frac{1}{2}\Rightarrow A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}\)

Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-1}{-\frac{1}{2}-2}=\frac{2}{5}\)

c. Để \(A< 0\Rightarrow-\frac{1}{x-2}< 0\Rightarrow x-2>0\Rightarrow x>2\)

Vậy với \(x>2\)thì \(A< 0\)

2 tháng 8 2017

ĐK \(a\ne\left\{-1;1\right\}\)

a. Ta có \(Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)^2}{a+1}\)

b. Khi \(\left|x\right|=5\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)

Với \(x=5\Rightarrow Q=\frac{\left(5-1\right)^2}{5+1}=\frac{16}{6}=\frac{8}{3}\)

Với \(x=-5\Rightarrow Q=\frac{\left(-5-1\right)^2}{-5+1}=\frac{36}{-9}=-4\)

2 tháng 8 2017

a) \(x\ne2\) ; \(x\ne-2\)

b)  Ta có 

\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{x^2-4}\)

\(=\frac{\left(x-1\right)\left(x^2-4\right)}{x^2-4}=x-1\)

Để C = 0 thì x-1 = 0 =>>> x=1(tm)

c) Để C nhận giá trị dương thì C thuộc Z+ = >>>>>>>>   \(x-1\ge0\)=>>>  \(x\ge1\)

2 tháng 8 2017

a) phân thức xác định khi \(x^3+8\ne0\Leftrightarrow x^3\ne-8\Leftrightarrow x\ne-2\)

b)\(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

c) \(\frac{2}{x+2}=\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

d)\(\frac{2}{x+2}=2\Leftrightarrow x+2=1\Leftrightarrow x=-1\)

30 tháng 12 2017

bài 113 nâng cao và các chuyên đề toán 8 đại số (Vũ  Dương Thụy -Nguyễn Ngọc Đạm)

15 tháng 9 2017

\(M=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(M=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(M=\left[x\left(x+5\right)+2\left(x+5\right)\right]\left[x\left(x+4\right)+3\left(x+4\right)\right]-24\)

\(M=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)

\(M=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(M=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-24\)

\(M=\left(x^2+7x+11\right)^2-1-24\)

\(M=\left(x^2+7x+11\right)^2-25\)

\(M=\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)

\(M=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

12 tháng 12 2018

Biểu thức đâu bạn ? :)))

12 tháng 12 2018

Sau khi ib với Đinh Lan Anh  thì \(P=\frac{2a^2}{a^2-1}+\frac{a}{a+1}-\frac{a}{a-1}\)

\(a,ĐKXĐ:\hept{\begin{cases}a+1\ne0\\a-1\ne0\end{cases}\Leftrightarrow a\ne\pm1}\)

\(b,P=\frac{2a^2}{a^2-1}+\frac{a}{a+1}-\frac{a}{a-1}\)

       \(=\frac{2a^2+a\left(a-1\right)-a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

       \(=\frac{2a^2+a^2-a-a^2-q}{\left(a-1\right)\left(a+1\right)}\)

       \(=\frac{2a^2-2a}{\left(a-1\right)\left(a+1\right)}\)

       \(=\frac{2a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}\)

      \(=\frac{2a}{a+1}\)

\(c,P=\frac{2a}{a+1}=\frac{2a+2}{a+1}-\frac{2}{a+1}=2-\frac{2}{a+1}\)

Để \(P\inℤ\)thì \(2-\frac{2}{a+1}\inℤ\)

                    \(\Leftrightarrow\frac{2}{a+1}\inℤ\)

Mà \(a\inℤ\Rightarrow a+1\inℤ\)

Ta có bảng

a + 1                    -2                                    -1                                1                               2                             
a-3-201

Kết hợp ĐKXĐ \(a\ne\pm1\)ta  được \(a\in\left\{-3;-2;0\right\}\)

Vậy //////