K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

\(x^3-7x-6=0\)

\(x^3-3x^2+3x^2+2x-9x-6=0\)

\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = xa) Tìm điều kiện của n để phương trình có ngiệm x>0;b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.2) Rút gọn biểu thức sau:A = (x3 - y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)-...
Đọc tiếp

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:

1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = x

a) Tìm điều kiện của n để phương trình có ngiệm x>0;

b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.

2) Rút gọn biểu thức sau:

A = (x- y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)- [\(\frac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\frac{y}{y-x}\)]:[\(\frac{x-y}{x}-\frac{x}{x-y}\)]}

3) Tìm các số a, b để đa thức P(x) luôn chia hết cho đa thức Q(x) với:

P(x) = 6x- 7x+ ax+ 3x + 2

Q(x) = x- x + b

4) Xác định đa thức bậc ba F(x). Biết F(0) = 8; F(1) = 20; F(2) = 2; F(3) = 2004:

F(x) = ax(x - 1)(x - 2) + bx(x - 1) + cx + d

5) C/m rằng: Hiệu các bình phương của 2 số tự nhiên lẻ bất kì luôn chia hết cho 8

6) Cho biểu thức M = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)và B = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

a) Chứng minh rằng nếu A = 1 thì B = 0.

b) Ngược lại nếu B =0 thì A = 0 có đúng không? Vì sao?

                                                                              - The End -

 

0
Câu 1: Cho tam giác ABC vuông tại A, AB = 4cm; AC= 5cm , các điểm D,E lấn lượt trên cạnh AB,AC sao cho BD=AE=x(cm).Tính giá trị x để SBEC nhỏ nhất.Câu 2: Chiều dài , chiều rộng của hình chữ nhật la 1 số nguyên tố và chu vi của hình chữ nhật đó là 72 cm. Tính GTLN của Shình chữ nhật đó.Câu 3: Tìm 3 số x,y,z thỏa mãnX2 +y2 +z2 +2 – 4y +6z = -14Câu 4: Cho x,y nguyên dương, thoãn mãn xy -5x +2y= 30. Tính tổng có...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A, AB = 4cm; AC= 5cm , các điểm D,E lấn lượt trên cạnh AB,AC sao cho BD=AE=x(cm).Tính giá trị x để SBEC nhỏ nhất.

Câu 2: Chiều dài , chiều rộng của hình chữ nhật la 1 số nguyên tố và chu vi của hình chữ nhật đó là 72 cm. Tính GTLN của Shình chữ nhật đó.

Câu 3: Tìm 3 số x,y,z thỏa mãn

X2 +y2 +z2 +2 – 4y +6z = -14

Câu 4: Cho x,y nguyên dương, thoãn mãn xy -5x +2y= 30. Tính tổng có GT x.

Câu 5: Cho a+ b = 3; a2 +b2 =7. Giá trị biểu thức: a4+b4.

Câu 6: GTLN của biểu thức: P= (x4+3y2+25)2

Câu 7: Số dư khi chia đa thức f(x) = 8x3-1 chi g(x) = 4x2 +2x +1

Câu 8: Tổng số đo góc ngoài và góc trong của 1 đa giác bằng 504. Tính số cạnh đa giác đó.

Câu 9: Cho x,y,z thõa mãn x+y+z=3. Tính GTLN P= xy+yz+zx

Câu 10 :Tìm số tự nhiên n biết: 1+2+3+…+232=2n-1

Câu 11: Tính tổng các số nguyên biết: IxI <2016

Câu 12: Tìm số tận cùng của tích A=(2160 -1)(152 -73 )

Câu 13: x2 -8x +15=0 .Tìm x

Câu 14: Tìm số dư khi chia 19992016 : 5

Câu 15: Tìm số dư khi chia : 513+511-510-40 cho 43

Câu 16: Tính tổng các số nguyên dương x sao cho x+56 ;x+113 đều là số chính phương

Câu 17: Tính GTBT A = 12 -22+32-42+…-20162+20172

Câu 10: Tìm số cạnh của đa giác có 35  đường chéo

1
24 tháng 2 2017

Mình sắp thi Violimpic Toán Cấp Huyện rồi...

Giúp mình với♥♥♥

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????