Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ab= 5x (axb) +2 mà ab-2 = 5x a x b. suy ra 10xa +b -2 =5 x a x b. vì 5xaxb chia hết cho 5 nên b-2 chia hết cho 5 nên b= 7 hoặc 2. nếu b=7 thì a = 21(Loại) , nếu b=2 thì a=6(thỏa mãn) thử lại thì 62=5x6x2 +2.
ta có ab= 5x (axb) +2
mà ab-2 = 5x a x b.
suy ra 10xa +b -2 =5 x a x b.
vì 5xaxb chia hết cho 5 nên b-2 chia hết cho 5 nên b= 7 hoặc 2.
nếu b=7 thì a = 21(Loại) ,
nếu b=2 thì a=6(thỏa mãn)
thử lại thì 62=5x6x2 +2.
Gọi chữ số hàng chục là a thì hàng đơn vị là a+2 (ĐK: a<8, a khác 0) Ta có 10xa +a+2= 4x(a+a+2)+9 =>11xa+2= 8xa+17 => 3xa=15 => a=5. Số cần tìm là 57
giá trị của số đó không thay đổi khi đổi chỗ chữ số hàng nghìn cho chữ số hàng chục,chữ số hàng trăm hàng trăm cho chữ số hàng đơn vị => chữ số hàng nghìn = hàng chục , hàng trăm = hàng đơn vị . gọi số cần tìm là abab trong đó a+b+a+b= 26 => a.2 phải = 16 ( 16=8.2) và b.2=10(10=5.2) tổng cộng là 26 , ta lấy 16:2 , 10:2 sẽ tìm ra đc số lẻ đó
Gọi chữ số hàng chục là a thì hàng đơn vị là a+2
(ĐK: a<8, a khác 0)
Ta có 10xa +a+2= 4x(a+a+2)+9
=>11xa+2= 8xa+17
=> 3xa=15 => a=5.
Số cần tìm là 57
Do giá trị của số đó không thay đổi khi đổi chữ số hàng nghìn cho chữ số hàng chục, chữ số hàng trăm cho chữ số hàng đơn vị nên ta có chữ số hàng nghìn bằng chữ số hàng chục và chữ số hàng trăm bằng chữ số hàng đơn vị.
Gọi số cần tìm là \(\overline{abab}\) (a, b là các chữ số và a khác 0)
Do tổng các chữ số bằng 26 nên a + b = 13
Do tích các chữ số là số tròn chục nên ta có a hoặc b phải bằng 5, chữ số còn lại chia hết cho 2.
Vậy thì chữ số còn lại là: 13 - 5 = 8.
Tóm lại ta tìm được hai số thỏa mãn là: 5858 hoặc 8585.
Bạn nào biết câu nào thì giúp mình làm câu ấy nha.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n