Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
1. a chia cho 12 dư 8
=>a=12.k+8
=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)
a không chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.
Câu 7:Ta có:24 chia hết cho 6 nên nếu 24 chia một số và có dư, b ko chia hết cho 6
Câu 8:VD:c chia hết cho các số 2,3,6,9
Ta có: a = 30b + 15. Do đó:
a không chia hết cho 2 vì 30b ⋮ 2 và 15 không chia hết cho 2
a ⋮ 3 vì 30b ⋮ 3 và 15 ⋮ 3
a ⋮ 5 vì 30b ⋮ 5 và 15 ⋮ 5
a không chia hết cho 6 vì 30b ⋮ 6 và 15 không chia hết cho 6
Lời giải:
a. $a=30k+18$ với $k$ là số tự nhiên bất kỳ.
b.
$a=30k+18=2(15k+9)\vdots 2$
$a=30k+18=3(10k+6)\vdots 3$
$a=30k+18=5(6k+3)+3\not\vdots 5$
$a=30k+18=6(5k+3)\vdots 6$