Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
Khi so sánh AB và AC sẽ có 3 trường hợp xảy ra: AC < AB; AC = AB; AC > AB
+ Nếu AC < AB
Xét tam giác ABC có AC < AB
=> góc B < góc C ( quan hệ giữa cạnh và góc đối diện trong tam giác )
=> Trái với giả thiết góc B > góc C => vô lý
+ Nếu AC = AB
AC = AB => Tam giác ABC cân tại A ( dấu hiệu nhận biết )
=> góc B = góc C ( tính chất )
=> Trái với giả thiết góc B > góc C => vô lý
Vậy nếu tam giác ABC có góc B > góc C thì AC > AB ( đpcm )
Nếu AB > AC thì ∠C > ∠B (góc đối diện với cạnh lớn hơn là góc lớn hơn)
Điều này trái với giả thiết ∠B > ∠C nên không xảy ra.
Nếu AB = AC thì ΔABC cân tại A
⇒ ∠B = ∠C(tính chất tam giác cân)
Điều này trái với giả thiết ∠B > ∠C nên không xảy ra.
Vậy nếu ∠B > ∠C thì AC > AB.
A B C M
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)