\(\left(-\frac{3}{4}x^3y^2\right)+2x^3y^2-\left(-\frac{5}{8}x^3y2\right)là\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

2 tháng 11 2019

Bài 1:

\(4.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)

\(=4.\frac{1}{4}-2.\frac{1}{4}+3.\left(\frac{-1}{2}\right)+1\)

\(=1-\frac{1}{2}-\frac{3}{2}+1\)

\(=0\)

2 tháng 11 2019

Bài 2: 

a) \(\frac{37-x}{x+13}=\frac{3}{7}\)

\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)

\(\Rightarrow259-7x=3x+39\)

\(\Rightarrow259-39=3x+7x\)

\(\Rightarrow220=10x\)

\(\Rightarrow x=22\)

d) \(\frac{3^2.3^8}{27^3}=3^x\)

\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)

\(\frac{\Rightarrow3^{10}}{3^9}=3^x\)

\(\Rightarrow3=3^x\)

\(\Rightarrow x=1\)

Hok tốt nha^^

18 tháng 8 2019

\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\left(2-x\right)=0\end{cases}}}\)

=> x=1 ; x=0 ; x=2

Vậy..

18 tháng 8 2019

Bài 1 : 

b) \(\left|x-3\right|=5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-5\\x-3=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

Vậy x thuộc {-2; 8}

c) \(\left|2x+1\right|=x-8\)

\(\Rightarrow\orbr{\begin{cases}2x+1=-x+8\\2x+1=x-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=7\\x=-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-9\end{cases}}\)

Vậy x thuộc {-9; 7/3}

Câu c) tớ không chắc, thông cảm.

=))

18 tháng 7 2018

Ta có : 

\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)

\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)

\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)

\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)

\(\Rightarrow A=\frac{3}{4}x^6y^5\)

Lại có : 

\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)

ADTCDTSBN , ta có : 

\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)

Thay \(x=1;y=\frac{2}{3}\)vào A ta được : 

\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)

\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)

\(\Rightarrow A=\frac{8}{81}\)

Vậy ...

18 tháng 7 2018

ta có hai cách giải

cách 1:

gọi x/3=y/2=k 

=> x=3k và y=2k

vì x+3y=3 => 3k+6k=3

=> 9k=3 => k=1/3

suy ra x=1 và y= 2/3 

* Thay vào x;y vào phép tính trên rồi tự tính nhé

nếu k cho mik mik sẽ gợi ý cách còn lại

THANKS

3 tháng 6 2019

\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)

\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)

\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)

\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)