Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(x^2-mx+1005m=0\) có \(\Delta=m^2-4.1005m=m^2-4020m\)
Do pt có hai nghiệm nên \(\Delta\ge0\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge4020\end{matrix}\right.\)
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1005m\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{2.1005m+2680}{m^2+1}=\dfrac{2010m+2680}{m^2+1}\)
\(=335\left(\dfrac{\left(m+3\right)^2}{m^2+1}-1\right)\ge-335\)
Vậy minM = -335, khi m = -3.
\(\ast\Delta>0\Leftrightarrow m^2-4.1005m>0\Leftrightarrow m<0\text{ hoặc }m>4020\)
\(\ast x_1.x_2=1005m;\text{ }x_1+x_2=m\)
\(P=\frac{2x_1.x_2+2680}{\left(x_1+x_2\right)^2+1}=\frac{2010m+2680}{m^2+1}=670.\frac{3m+4}{m^2+1}\)
\(=670.\left(\frac{3m+4}{m^2+1}+\frac{1}{2}\right)-\frac{670}{2}=670.\frac{m^2+1+2\left(3m+4\right)}{2\left(m^2+1\right)}-335\)
\(=335.\frac{\left(m+3\right)^2}{m^2+1}-335\ge-335\)
Dấu bằng xảy ra khi \(m+3=0\Leftrightarrow m=-3\text{ }\left(\text{thỏa}\right)\)
Vậy \(m=-3\)
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
\(a+b+c=1-m+m-1=0\)
\(\Rightarrow\) Pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
\(\frac{2.1\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(1+m-1\right)}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
b/ Theo vi - et thì:
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Ta có:
\(A=\frac{1}{x^2_1x_2+\left(m-1\right)x_2+1}-\frac{4}{x_1x^2_2+\left(m-1\right)x_1+1}\)
\(=\frac{1}{\left(m-1\right)x_1+\left(m-1\right)x_2+1}-\frac{4}{\left(m-1\right)x_2+\left(m-1\right)x_1+1}\)
\(=\frac{1}{m\left(m-1\right)+1}-\frac{4}{m\left(m-1\right)+1}\)
\(=-\frac{3}{m^2-m+1}=-\frac{3}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\)
\(\ge-\frac{3}{\frac{3}{4}}=-4\)
Vậy GTNN là A = - 4 đạt được khi \(m=\frac{1}{2}\)