K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NH
0
NH
0
\(ab-ac+bc=c^2-1\)
\(\Rightarrow ab-ac+bc-c^2=-1\)(quy tắc chuyển vế)
\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Rightarrow\left(a+c\right)\left(b-c\right)=-1\)
Mà \(-1=\left(-1\right)\times1\) hoặc \(1\times\left(-1\right)\)
\(\Rightarrow\left(a+c\right)=-1;\left(b-c\right)=1\) (1)
hoặc \(\left(a+c\right)=1;\left(b-c\right)=-1\) (2)
Xét (1), ta có:
\(a+c=-1\) \(b-c=1\)
\(a=\left(-1\right)-c\) \(b=1+c\)
\(a=\left(-1\right)+\left(-c\right)\)
\(a=-\left(1+c\right)\)
Từ đó ta có \(\frac{a}{b}=\frac{-\left(1+c\right)}{1+c}=-1\)
Xét (2), ta có:
\(a+c=1\) \(b-c=-1\)
\(a=1-c\) \(b=\left(-1\right)+c\)
\(a=1+\left(-c\right)\) \(b=+\left(c-1\right)\)
\(a=-\left(c-1\right)\)
Từ đó ta có \(\frac{a}{b}=\frac{-\left(c-1\right)}{+\left(c+1\right)}=-1\)
Từ kết quả của hai trường hợp (1) và (2), ta có:
\(\frac{a}{b}=-1\)
Vậy \(\frac{a}{b}=-1\)
P/S: Những kết quả của a và b ở mỗi trường hợp là áp dụng quy tắc ( ghi nhớ ) trong SGK nha bạn.