Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+2x+2=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\)
\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
tự làm tiếp đi chị
bn kham khảo ở đây nha
Câu hỏi của Mimi - Toán lớp 8 | Học trực tuyến
vào thống kê hoie đáp của mình có chữ màu xanh trng câu hỏi này nhấn zô đó sẽ ra
hc tốt:~:B~
a) \(x^2-8x+2018=x^2-8x+16+2002=\left(x^2-8x+16\right)+2002=\left(x-4\right)^2+2002\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+2002\ge2002\)(Luôn Luôn Dương)
b)\(3x^2+6x+7=3x^2+6x+3+4=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)(Luôn Luôn Dương)
c)\(3x^2-6x+5=3x^2-6x+3+2=3\left(x^2-2x+1\right)+2=3\left(x-1\right)^2+2\)
Vì \(3\left(x-1\right)^2\ge0\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\)(Luôn Luôn Dương)
d)\(x^2-8x+19=x^2-8x+16+3=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+3\ge3\)(Luôn Luôn Dương)
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a, \(E=4x^2+6x+5=4\left(x^2+\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+5\)
\(=4\left(x+\frac{3}{4}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
Vậy ta có đpcm
b, \(F=2x^2-3x+7=2\left(x^2-\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+7\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{47}{8}\ge\frac{47}{8}>0\forall x\)
Vậy ta có đpcm
c, \(K=5x^2-4x+1=5\left(x^2-\frac{2.2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+1\)
\(=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}>0\forall x\)
Vậy ta có đpcm
d, \(Q=3x^2+2x+5=3\left(x^2+\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\right)+5\)
\(=3\left(x+\frac{1}{3}\right)^2+\frac{14}{3}\ge\frac{14}{3}>0\forall x\)
Vậy ta có đpcm
a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)
Vậy ta có đpcm
b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)
Vậy ta có đpcm
c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)
\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)
Vậy ta có đpcm
d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)
Vậy ta có đpcm
e, tự làm nhé
A=x2-6x+10
\(A=\left(x-3\right)^2+1>1\)
\(\Rightarrow A\) luôn dương
A = x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 + x + 5
= ( x2 + x + 1/4 ) + 19/4
= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )
C = 4x2 + 4x + 2
= 4( x2 + x + 1/4 ) + 1
= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
D = ( x - 3 )( x - 5 ) + 4
= x2 - 8x + 15 + 4
= ( x2 - 8x + 16 ) + 3
= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
E = x2 - 2xy + 1 + y2
= ( x2 - 2xy + y2 ) + 1
= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a) \(x^2-8x+19=\left(x-4\right)^2+3>0\)
b) \(3x^2-6x+5=3\left(x-1\right)^2+2>0\)
c) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
d) \(x^2-4x+7=\left(x-2\right)^2+3>0\)
e) \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
f) do \(x^2\ge0\) với mọi x
nên \(x^2+8>0\)