Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=2016.2016.....2016=2016^{2015}\)
\(B=2017.2017.....2017\)
\(B=2017^{2016}\)
\(B=\left(2016+1\right)^{2016}\)
\(B=2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}+2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}.2017+4033\)
Lại có :
\(2016^{2015}\) luôn có chữ số tận cùng là \(6\)
\(\Rightarrow\)\(2016^{2015}.2017\) có chữ số tận cùng là \(2\)
\(\Rightarrow\)\(2016^{2015}.2017+4033\) có chữ số tận cùng là \(5\)
Do đó :
\(A+B\) chia hết cho \(5\)
Vậy \(A+B\) chia hết cho \(5\)
Chúc bạn học tốt ~
bài này là chứng minh chia hết cho 30 hay chứng minh chia hết cho 37 bn
52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31
Vậy 52017 + 52016 + 52015 chia hết cho 31.
Ta có: \(5^3\equiv1\left(mod31\right)\)
=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)
=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)
=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)
=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)
Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)
ko ai giúp mk à
ai cũng đc giúp mk đi nha mk cần gấp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Dề của bạn sai rôivơí n=1 thì 14 khong chia hết cho 12 rồi cm gì nữa