Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.1
a) Áp dụng định lý Bezout:
\(P\left(x\right)⋮2x+3\)
\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)
hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)
\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)
\(\Rightarrow m=12\)
Vậy m = 12
Bài 1:
a, \(A=x\left(6-x\right)+74+x=-x^2+6x+74+x=-x^2+7x+74\)
\(=-\left(x^2-2\cdot x\cdot3,5+\dfrac{49}{4}\right)+\dfrac{345}{4}\)
\(=-\left(x-3,5\right)^2+\dfrac{345}{4}\)
Có: \(-\left(x-3,5\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3,5\right)^2+\dfrac{345}{4}\le\dfrac{345}{4}\)
Dấu ''='' xảy ra khi x = 3,5
Vậy A_max = \(\dfrac{345}{4}\) khi x = 3,5
b, \(B=5x-x^2=-x^2+5x-\dfrac{25}{4}+\dfrac{25}{4}\)
\(=-\left(x^2-2\cdot x\cdot2,5+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)
Có: \(-\left(x-2,5\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
Dấu ''='' xảy ra khi x = 2,5
Vậy B_max = \(\dfrac{25}{4}\) khi x = 2,5
Bài 2:
a, m = 12 (cái này dùng máy tính mà bấm, nhanh gọn lẹ)
b, Không đặt phép tính đc, vs lại ý này dễ, tính tay --> r = 0
c, \(P\left(x\right)=6x^3-7x^2-16x+12\)
\(=6\left(x+\dfrac{3}{2}\right)\left(x-2\right)\left(x-\dfrac{2}{3}\right)\)
\(=\left(2x+3\right)\left(x-2\right)\left(3x-2\right)\)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
a/\(P\left(x\right)=\left(6x^3+9x^2\right)-\left(16x^2+24x\right)+\left(8x+m\right)\)
\(\Leftrightarrow P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+\left(8x+m\right)⋮2x+3\)
\(\Rightarrow8x+m⋮2x+3\). Chỉ có thể \(8x+m=4\left(2x+3\right)\Rightarrow m=12\)
b/Áp dụng Betzout ta có
\(x=\frac{2}{3}\) là nghiệm của đa thức chia nên \(P\left(\frac{2}{3}\right)=r\) ( với r là đa thức bậc 0, vì đa thức chia bậc 1). Thế x=2/3 đc dư
-\(P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+4\left(2x+3\right)=\left(2x+3\right)\left(3x^2-8x+4\right)=\left(2x+3\right)\left(3x\left(x-2\right)-2\left(x-2\right)\right)=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)
Ta nhận thấy quy luật \(P\left(1\right)=1,P\left(2\right)=4,P\left(4\right)=16,P\left(5\right)=25\Rightarrow P\left(x\right)=x^2\)
Vậy \(P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)+x^2\)
Thay x=6,7 rồi tính
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
a/ \(2x+3=0\Rightarrow x=-\frac{3}{2}\)
Để \(P\left(x\right)⋮\left(2x+3\right)\Leftrightarrow P\left(-\frac{3}{2}\right)=0\)
\(\Leftrightarrow m-12=0\Rightarrow m=12\)
\(\Rightarrow P\left(x\right)=6x^3-7x^2-16x+12\)
b/ \(3x-2=0\Rightarrow x=\frac{2}{3}\)
\(P\left(\frac{2}{3}\right)=0\)
\(\Rightarrow P\left(x\right)⋮\left(3x-2\right)\) dư 0 hay \(P\left(x\right)\) chia hết \(3x-2\)
\(6x^3-7x^2-16x+12=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)