K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

Giả sử \(x\) là ước nguyên tố của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

\(\Rightarrow a.b⋮x\)và \(a+b⋮x\)

Vì \(a.b⋮x\Rightarrow a⋮x\)hoặc \(b⋮x\)

Vì \(a+b⋮x\Rightarrow a⋮x\)và \(b⋮x\Rightarrow x\inƯC\left(a,b\right)\)

Mà nếu \(a\)và \(b\)nguyên tố cùng nhau ( hay \(\left(a,b\right)=1\)) thì \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow x=1\)không phải là số nguyên tố trái với giả thiết đặt ra

Do đó không tồn tại ước nguyên tố \(x\)của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

Do đó \(a.b\)và \(a+b\)nguyên tố cùng nhau

\(\left(a.b,a+b\right)=1\)( đpcm )

/ Sai thì bỏ qua nha Hiro /

25 tháng 11 2015

gọi d=2a+1 và 6a+4

suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d

suy ra : (6a+4)-(2a+1) chia hết cho d

suy ra (6a+4)-3(2a+1) chia hết cho d

suy ra 1 chia hết cho d suy ra d=1

vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau

đúng rồi đấy nhớ tick cho mình nhé!

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

Phản chứng. Giả sử 2 số đó không nguyên tố cùng nhau.
Gọi $d=ƯCLN(5a+2b, 7a+3b), d> 1$

$\Rightarrow 5a+2b\vdots d; 7a+3b\vdots d$

$\Rightarrow 5(7a+3b)-7(5a+2b)\vdots d$

$\Rightarrow b\vdots d$

Mà $5a+2b\vdots d$ nên $5a\vdots d$

Vì $(a,b)=1$ nên $(a,d)=1$

$\Rightarrow 5\vdots d$. Mà $d>1$ nên $d=5$

$5a+2b\vdots 5\Rightarrow 2b\vdots 5\Rightarrow b\vdots 5$

$$7a+3b\vdots 5; b\vdots 5\Rightarrow 7a\vdots 5\Rightarrow a\vdots 5$

$\Rightarrow a,b\vdots 5$ (vô lý)

Vậy điều giả sử là sai. Tức 2 số đó ntcn.

 

26 tháng 12 2017

mk biet cau tra loi rui

26 tháng 12 2017

bạn giúp mình với

16 tháng 11 2016

Bạn xem ở đây nhé.

Câu hỏi của Lê Nguyễn Bảo Trân - Toán lớp 6 - Học toán với OnlineMath