Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy
Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)
Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108
Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên
\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)
Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m
Gọi số mét vải của 3 tấm vải lần lượt là a;b;c (a;b;c > 0)
Theo bài ra ta có:
a + b + c = 210 và: \(a-\frac{1}{7}a=b-\frac{2}{11}b=c-\frac{1}{3}c\)
\(\Rightarrow\frac{6}{7}a=\frac{9}{11}b=\frac{2}{3}c\Rightarrow\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}\)
\(\Rightarrow\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}\)
Áp dụng tính chất dãy tỉ số bằng nhau và a+b+c=210; ta có:
\(\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}=\frac{18a+18b+18c}{21+22+27}=\frac{18\left(a+b+c\right)}{70}=\frac{18\times210}{70}=54\)
Từ \(\frac{18a}{21}=54\Rightarrow a=54\times21\div18=63\left(m\right)\)
\(\frac{18b}{22}=54\Rightarrow b=54\times22\div18=66\left(m\right)\)
\(\frac{18c}{27}=54\Rightarrow c=54\times27\div18=81\left(m\right)\)
Vậy tấm thứ nhất dài 63 m
tấm thứ hai dài 66 m
tấm thứ ba dài 81 m