K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

bằng 2588

14 tháng 9 2016

cách làm như thế nào ạ

17 tháng 3 2017

A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)

A=\(\dfrac{227}{675}\)

16 tháng 3 2017

\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)

\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)

\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)

\(=-1+\frac{1}{27}-\frac{1}{27}\)

\(=-1\)

16 tháng 3 2017

1/2015

15 tháng 3 2017

\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)

   \(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)

    \(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)

    \(=-1+\frac{1}{27}-\frac{1}{27}\)

     \(=-1\)

19 tháng 3 2017

sao làm như vậy được??? 2/19.21 và 2/23.25 bn k làm được như thế đâu vì nó k cùng quy luật với các ps kia

18 tháng 3 2017

-1

18 tháng 3 2017

Là -1.Đúng 100%

21 tháng 5 2016

\(2B=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{23}-\frac{1}{25}\right)\)

\(2B=2\left(\frac{1}{3}-\frac{1}{25}\right)\)

\(2B=2\times\frac{22}{75}\)

\(B=\frac{44}{75}\)

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

    =1-1/101

    =100/101

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5

    =(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5

    =(1-1/101).2,5

    =100/101.2,5

    =250/101

c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2

    =(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2

    =(1/2-1/2010).2

    =1004/1005

30 tháng 7 2020

\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)

Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)

Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)

\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)

Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)

=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)

30 tháng 7 2020

Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)

\(\Rightarrow A=12a+\frac{12}{25}\)

Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3B-B=1-\frac{1}{243}\)

\(\Rightarrow2B=\frac{242}{243}\)

\(\Rightarrow B=\frac{121}{243}\)

\(\Rightarrow A=11a+B\)

\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)

\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)

\(\Leftrightarrow a=\frac{109}{6075}\)