K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Bạn xem lại câu 5 xem có sai đề không chứ mình tính mãi không ra

1 tháng 9 2017

Đề câu 5 k sai nhé. Dùng Mode 5 3 vẫn ra.

17 tháng 7 2017

\(H=2\sqrt{27}+\sqrt{243}-6\sqrt{12}\\ =2\cdot\sqrt{9}\cdot\sqrt{3}+\sqrt{81}\cdot\sqrt{3}-6\cdot\sqrt{4}\cdot\sqrt{3}\\ =2\cdot3\cdot\sqrt{3}+9\cdot\sqrt{3}-6\cdot2\cdot\sqrt{3}\\ =6\sqrt{3}+9\sqrt{3}-12\sqrt{3}\\ =3\sqrt{3}=\sqrt{9}\cdot\sqrt{3}=\sqrt{27}\)

\(I=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\\ =\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\\ =\sqrt{\sqrt{13}^2-2\cdot\sqrt{13}\cdot1+1^2}+\sqrt{\sqrt{13}^2+2\cdot\sqrt{13}\cdot1+1^2}\\ =\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\\ =\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\\ =\sqrt{13}-1+\sqrt{13}+1\\ =2\sqrt{13}=\sqrt{4}\cdot\sqrt{13}=\sqrt{52}\)

\(I=\sqrt{10-4\sqrt{6}}+\sqrt{10+4\sqrt{6}}\\ =\sqrt{6-2\cdot\sqrt{6}\cdot2+4}+\sqrt{6+2\cdot\sqrt{6}\cdot2+4}\\ =\sqrt{\sqrt{6}^2-2\cdot\sqrt{6}\cdot2+2^2}+\sqrt{\sqrt{6}^2+2\cdot\sqrt{6}\cdot2+2^2}\\ =\sqrt{\left(\sqrt{6}-2\right)^2}+\sqrt{\left(\sqrt{6}+2\right)^2}\\ =\left|\sqrt{6}-2\right|+\left|\sqrt{6}+2\right|\\ =\sqrt{6}-2+\sqrt{6}+2\\ =2\sqrt{6}=\sqrt{4}\cdot\sqrt{6}=\sqrt{24}\)

17 tháng 7 2017

Làm giúp mik câu L* vs bạn =[[

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

27 tháng 6 2019

Câu 4: a) ĐK: \(x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

b) ĐK: \(x^2-3x+2\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

c) Đk: \(-3\le x< 5\)

d) x + 3 và 5 - x đồng dấu. Xét hai trường hợp:

\(\left\{{}\begin{matrix}x+3\ge0\\5-x>0\left(\text{do mẫu phải khác 0}\right)\end{matrix}\right.\Leftrightarrow-3\le x< 5\)

\(\left\{{}\begin{matrix}x+3< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>5\end{matrix}\right.\) do x ko thể đồng thời thỏa mãn cả hai nên loại.

27 tháng 6 2019

Câu 1:

a) Đặt \(A=x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\)

\(A=x+\left|x+2\right|\cdot\left(x-2\right)\)

+) Với \(x\ge-2\):

\(A=x+\left(x+2\right)\left(x-2\right)=x+x^2-4\)

+) Với \(x< -2\):

\(A=x-\left(x+2\right)\left(x-2\right)=x-x^2+4\)

b) \(B=\sqrt{m^2-6m+9-2m}\)

\(B=\sqrt{m^2-8m+9}\)

Bạn xem lại đề nhé :)

c) \(C=1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)

\(C=1+\sqrt{x-1}\)

d) \(D=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(D=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

\(D=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(D=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

+) Xét \(x\ge8\):

\(D=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

+) Xét \(4< x< 8\):

\(D=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

Vậy....

31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1

1 tháng 12 2017

1) \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)

2)\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}-\sqrt{3}\)

3)\(\sqrt{6-2\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{9}-1\right)^2}\)

\(=\sqrt{5}-1-\left(\sqrt{9}-1\right)\)

\(=\sqrt{5}-\sqrt{9}\)

4)\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\sqrt{2}+1-\left(\sqrt{2-1}\right)=2\)

5) \(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)=2\sqrt{3}\)

6)\(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}-\left(3-\sqrt{2}\right)=2\sqrt{2}-1\)

7)\(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}=\sqrt{\left(\sqrt{20}-1\right)^2}+\sqrt{\left(\sqrt{20}+1\right)^2}\)

\(=\sqrt{20}-1+\sqrt{20+1}=2\sqrt{20}\)

17 tháng 6 2018

bài 3 sai kìa

4 tháng 10 2020

a) \(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-2\sqrt{5}+3}\)

\(=\sqrt{3-\sqrt{3}-\sqrt{5}}\)

20 tháng 10 2018

 a) \(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7\left(\sqrt{3}+\sqrt{5}\right)}}=\) \(\frac{\sqrt{2}}{\sqrt{7}}\)

 b ) \(\frac{15\sqrt{2}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=\frac{3\left(5\sqrt{2}+3\sqrt{3}\right)}{3\left(\sqrt{3}+\sqrt{5}\right)}\)\(=\frac{5\sqrt{2}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)

c)\(\frac{\sqrt{2}-\sqrt{6}+\sqrt{3}-\sqrt{9}+\sqrt{4}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) =  \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)+\sqrt{3}\left(1-\sqrt{3}\right)+\sqrt{4}\left(1-\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\(=\frac{\left(1-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

 d) \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)