Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
a) \(x^2\left(x-3\right)+12-4x=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x\in\left\{\pm2\right\}\end{cases}}\)
b) \(x\left(2x-7\right)-3\left(7-2x\right)=0\)
\(x\left(2x-7\right)+3\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-7=0\\x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-3\end{cases}}\)
c) \(\left(2x-1\right)^2-25=0\)
\(\left(2x-1\right)^2-5^2=0\)
\(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\left(2x-6\right)\left(2x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\2x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
d) \(\left(3x-5\right)^2-\left(2x-3\right)^2=0\)
\(\left(3x-5-2x+3\right)\left(3x-5+2x-3\right)=0\)
\(\left(x-2\right)\left(5x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5x-8=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{5}\end{cases}}\)
\(1,x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(2,\left(x+2\right)\left(x-3\right)-x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
\(3,36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{6}\\x=\frac{7}{6}\end{cases}}\)
Chúc bn học giỏi nhoa!!!
Ta có : x2 - x = 0
=> x(x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
a/ \(\left(x-4\right)^2-36=0\)
<=> \(\left(x-4-6\right)\left(x-4+6\right)=0\)
<=> \(\left(x-10\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
b/ \(\left(x+8\right)^2=121\)
<=> \(\left(x+8\right)^2-121=0\)
<=> \(\left(x+8-11\right)\left(x+8+11\right)=0\)
<=> \(\left(x-3\right)\left(x+19\right)=0\)
<=> \(\orbr{\begin{cases}x-3=0\\x+19=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=3\\x=-19\end{cases}}\)
d/ \(4x^2-12x+9=0\)
<=> \(\left(2x\right)^2-2.2x.3+3^2=0\)
<=> \(\left(2x-3\right)^2=0\)
<=> \(2x-3=0\)
<=> \(x=\frac{3}{2}\)
a, \(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)
\(\Leftrightarrow\dfrac{12}{x^2-4}-\left(\dfrac{x+1}{x-2}-\dfrac{x+7}{x+2}\right)=0\)
\(\Leftrightarrow\dfrac{12}{x^2-4}-\left[\dfrac{\left(x+1\right)\left(x+2\right)-\left(x-2\right)\left(x+7\right)}{\left(x-2\right)\left(x+2\right)}\right]=0\)
\(\Leftrightarrow\dfrac{12}{x^2-4}-\left[\dfrac{x^2+3x+2-x^2-5x+14}{x^2-4}\right]=0\)
\(\Leftrightarrow\dfrac{12}{x^2-4}-\left(\dfrac{14-2x}{x^2-4}\right)=0\)
\(\Leftrightarrow12=14-2x\)
\(\Leftrightarrow x=1\)
Vậy x = 1
Ta có : (x + 2)(x - 3) - x - 2 = 0
=> (x + 2)(x - 3) - (x + 2) = 0
=> (x + 2) (x - 3 - 1) = 0
=> (x + 2) (x - 4) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
Vậy x = {-2;4}
a) \(2-x^2=0\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
b) \(\frac{2}{3x\left(x^2-4\right)}=0\)
\(\Leftrightarrow3x\left(x^2-4\right)=0\)
mà \(3x\left(x^2-4\right)\ne0\) thì căn thức mới xác định
vậy ko có giá trị nào của x thỏa mãn
a)
Ta có:\(2-x^2=0\)
\(\Rightarrow x^2=2-0=2\)
\(\Rightarrow x=\sqrt{2}\)
b)
Bn ghi rõ lại đề đc k:
là như này:\(\frac{2}{3}x\left(x^2-4\right)=0\)hay\(\frac{2}{3x}\left(x^2-4\right)=0\)hoặc\(\frac{2}{3x\left(x^2-4\right)}=0\)vậy
c)
\(x+2\sqrt{2x^2}+2x^3=0\)
\(\Rightarrow x\left(1+2\sqrt{2x}+2x^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\1+2\sqrt{2x}+2x^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\\left(1+\sqrt{2x}\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{\sqrt{2}}{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=\frac{\sqrt{2}}{2}\end{cases}}\)
a, gt của B xđ là x\(\ne\)2,x\(\ne\)-2
b, kq \(\frac{-8}{x+2}\)
x3-8-(x-2)(x-12)=0
⇔x3-8-(x2-12x-2x+24)=0
⇔x3-8-x2+12x+2x-24=0
⇔x3-x2+14x-32=0
⇔x3-2x2+x2-2x+16x-32=0
⇔x2(x-2)+x(x-2)+16(x-2)=0
⇔(x-2)(x2+x+16)=0
Vì x2+x+16=(x+1/2)2+63/4 ≥ 0 (với mọi x
⇒x-2=0
⇔x=2
Vậy phương trình có nghiệm là x=2